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Abstract. As an increasing number of businesses becomes powered by
machine-learning, inference becomes a core operation, with a growing
trend to be offered as a service. In this context, the inference task must
meet certain service-level objectives (SLOs), such as high throughput
and low latency. However, these targets can be compromised by inter-
ference caused by long- or short-lived co-located tasks. Prior works fo-
cus on the generic problem of co-scheduling to mitigate the effect of
interference on the performance-critical task. In this work, we focus on
inference pipelines and propose ODIN, a technique to mitigate the ef-
fect of interference on the performance of the inference task, based on
the online scheduling of the pipeline stages. Our technique detects in-
terference online and automatically re-balances the pipeline stages to
mitigate the performance degradation of the inference task. We demon-
strate that ODIN successfully mitigates the effect of interference, sus-
taining the latency and throughput of CNN inference, and outperforms
the least-loaded scheduling (LLS), a common technique for interference
mitigation. Additionally, it is effective in maintaining service-level objec-
tives for inference, and it is scalable to large network models executing
on multiple processing elements.

Keywords: CNN parallel pipelines · Online tuning · Design space ex-
ploration · Interference mitigation · Inference serving

1 Introduction

As machine learning becomes the backbone of the digital world, there is
an increasing demand for predictions as a service. This has led to the advent
of inference-serving systems [7, 19, 21, 24, 25]. These systems deploy pre-trained
model pipelines, i.e. inference pipelines, on the cloud, serving inference queries to
users and applications, often under strict quality-of-service (QoS) requirements
for the response times and throughput of the queries [32], expressed as service
level objectives (SLOs). However, due to the limited availability of resources of
cloud systems, in combination with high demand, inference pipelines are often
co-located with other workloads, either as part of the inference-serving system,
which may opt to co-locate multiple inference pipelines [22, 31], or as part of
common multi-tenancy practices of cloud providers [9,10] to increase utilization.



2 P. Noor Soomro et al.

The resulting interference from the co-located workload can have devastating
effects on inference performance, leading to violation of the SLOs.

The mitigation of the effect of interference from co-located workloads on
the performance of a critical application has been studied extensively. Sev-
eral scheduling techniques focus on the generic problem of workload colocation,
trying to retain or guarantee the performance of one critical or high-priority
workload under interference [4, 5, 9, 10], while more recent works focus on the
problem of colocating inference pipelines specifically [17, 22, 25]. Most of these
techniques perform extensive offline profiling and/or characterization of work-
loads and workload colocations, and build pre-trained machine-learning models
or analytical models for each system, while a brief profiling phase may also be re-
quired to characterize a workload [9,10]. These techniques proactively partition
resources to the workloads to mitigate the effect of interference, but may reac-
tively repartition resources or evict colocated workloads in response to changes
in the observed performance or interference. Finally, some techniques only focus
on interference effects affecting specific resources, such as GPU accelerators [4,5].

One way to achieve high throughput and low latency for inference pipelines is
pipeline parallelism. Pipeline parallelism in the form of layer pipelining has been
used extensively in training [12,14,20,23], and in inference [16,30], in combination
with operator parallelism, as it is able to reduce data movement costs. To exploit
pipelined parallelism, several techniques focus on finding near-optimal pipeline
schedules online, using heuristics to tackle the large search space [3, 15, 28, 29].
The ability to rebalance pipeline stages online leaves ample room for the opti-
mization of the execution of a pipeline under the presence of interference, where
such a reactive technique can detect and mitigate performance degradation, by
making better utilization of the existing resources.

In this work, we propose ODIN, an online solution that dynamically detects
interference and adapts the execution of inference pipelines on a given set of
processing elements. Thus, inference-serving systems can exploit them to re-
duce SLO violations in the presence of interference without eviction or resource
repartitioning. ODIN does not require offline resource utilization profiles for the
inference, and relies only on runtime observed execution times of pipeline stages,
therefore being easily applicable to any system. Additionally, ODIN avoids the
costly process of building system-specific or pipeline-specific models to charac-
terize interference. Instead, it dynamically reacts and adapts to the presence of
interference while executing the inference pipeline. ODIN by itself does not have
a notion of SLOs. It is a best-effort solution to quickly achieve near-optimal
throughput and latency in the presence of interference, which thereby results in
improved SLO conformance compared to a baseline least-loaded scheduler (LLS).

ODIN employs a heuristic pipeline scheduling algorithm, which uses the ex-
ecution times of pipeline stages, compares them against interference-free per-
formance values, and then moves network layers between pipeline stages, with
the goal to reduce the work on the execution unit affected by interference, while
maximizing the overall throughput of the pipeline. To minimize the duration of
the mitigation phase and quickly react to performance changes due to interfer-
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ence, the heuristic takes into account the extent of the performance degradation.
We extensively test ODIN with 12 different scenarios of interference in 9 differ-
ent frequency-duration settings and compare against the baseline least-loaded
scheduler (LLS), which selects the least-loaded execution unit to assign work to.
Our experiments show that ODIN sustains high throughput and low latency, in-
cluding tail latency, under the different interference scenarios, and reacts quickly
with a short mitigation phase, which takes 5-15 timesteps, outperforming LLS
by 15% in latency and 20% in throughput on average. Additionally, with an SLO
set at 80% of the original throughput, our solution is able to avoid 80% of SLO
violations under interference, in contrast to LLS, which only delivers 50% SLO
conformance. We also test the scalability of ODIN with a deep neural network
model on highly parallel platforms, showing that the quality of the solution is
independent of the number of execution units and depth of neural network.

2 Background and Motivation

Parallel inference pipelines provide a way to maximize the throughput of
inference applications, as layer-wise parallelism offers reduced communication
and minimizes the need to copy weights between execution units [2]. The par-
allelism exposed in parallel inference pipelines is across layers, with each layer
being assigned to a pipeline stage, as well as within layers, where operators
are parallelized for faster execution. A common way to execute pipelines is the
“bind-to-stage” approach [18], where each stage of the pipeline is assigned to a
unique set of compute units, i.e. an execution place, without sharing resources
with other stages. In our work, we also assume that execution places do not
share resources, therefore a pipeline stage will not experience interference from
pipeline stages running on other execution places. To achieve high throughput,
the pipeline stages need to be balanced, otherwise, throughput becomes limited
by pipeline stalls, as the pipeline stages have a linear dependence.

Figure 1 shows a motivating example of an inference pipeline for VGG16, a
CNN model. The pipeline consists of 4 stages, each consisting of 3 to 5 layers of
the network model (Figure 1a), in a configuration where the pipeline stages are
balanced in terms of execution time. Assuming a workload is colocated on the
execution place which executes the fourth stage of the pipeline, the execution
time of this stage increases due to interference, causing the throughput to de-
crease by 46% (Figure 1b). A static solution would dedicate the resources to the
colocated workload, and would use only 3 execution places. To maintain high
throughput, the pipeline stages would also be reduced to 3, leading to a subop-
timal solution (Figure 1c). A dynamic solution would attempt to rebalance the
initial four pipeline stages, to mitigate the effect of interference on the execution
time of the fourth stage. An exhaustive search for an optimal new configuration
is able to restore the initial throughput loss (Figure 1d), however this exhaustive
search required 42.5 minutes to complete.

This experiment allows us to make the following observations: First, the effect
of interference on a parallel inference pipeline can be mitigated by rebalancing
the pipeline stages. Second, partitioning the resources between the colocated
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(a) No interference
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(c) Execution with
3 stages

PS
 1

 [1
-4

]

PS
 2

 [5
-8

]

PS
 3

 [9
-1

3]

PS
 4

 [1
4-

16
]0.0

0.1

0.2

0.3

0.4

Ex
ec

ut
io

n 
tim

e 
[s

]

Throughput = 4.82 QPS

(d) Exhaustive
search rebalancing

Fig. 1: Throughput and execution time of a 4-stage pipeline for VGG-16.
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Fig. 2: System overview

workload and the inference pipeline leads to a shorted pipeline and a suboptimal
throughput. Third, dynamic reaction to interference is able to largely restore
throughput loss on the inference pipeline. Fourth, an exhaustive search for an
optimal configuration is infeasible in a reactive, dynamic solution. The above
observations motivate our work, which proposes an online scheduling technique
for the pipeline stages of inference pipelines.

3 ODIN: A dynamic solution to overcome interference
on inference pipelines

3.1 Methodology

In this work, we consider a system with a set of resources named execution
places (EPs). Each execution place may consist of multiple cores, but execution
places do not share performance-critical resources between them, e.g. caches,
memory controllers/links. Inference pipelines are linear and are implemented
with a bind-to-stage approach, where a single pipeline stage (PS) is assigned to
a single EP, i.e. a unique set of resources of the system, and pipeline stages do not
share resources. Pipeline stages can exploit the multiple resources within an EP
by other means of parallelism, e.g. operator parallelism. A pipeline configuration
defines the mapping of pipeline stages to execution places and the assignment
of layers of a neural network model to PSs. We additionally assume that, in
an interference-free system where the inference pipeline utilizes all the available
execution places, the stages are already effectively balanced across the execution
places. If a workload is colocated with a pipeline stage on one of the EPs, causing
interference and increase of the execution time of this stage, the heuristics which
form the backbone of our solution attempts to reduce the total work on the
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affected pipeline stage, moving network layers to non-affected pipeline stages.
A high-level overview of our approach, ODIN, is presented in Figure 2. Our
approach operates online and is agnostic to any other colocated application. At
runtime, we monitor the execution time of pipeline stages, and scan for changes in
the performance of the slowest pipeline stage. If its execution time has increased,
we consider it as affected by an interfering application and trigger the online re-
balancing of pipeline stages, to find a new configuration, using our heuristic algo-
rithm. If its execution time has decreased, we consider that any effect of interfer-
ence is no longer present, and once again trigger online rebalancing to find a new
configuration that reclaims resources from the colocated, interfering workload.

3.2 ODIN: A heuristic-based approach for pipeline stage
re-balancing under interference

We describe our approach, ODIN, to mitigate the effect of interference on
parallel inference pipelines, and the heuristics it uses to find new configurations
for the pipeline stages at runtime. The complete steps of our approach are pre-
sented in Algorithm 1. The algorithm takes as input the current configuration
C, which tracks the number of network layers belonging to each pipeline stage,
and a tuning parameter α. As the algorithm starts operating without interfer-
ence, the current configuration is considered to be optimal, and the pipeline
throughput is the one given by the current configuration. During execution, the
execution time of PSs is monitored. Interference is detected when the execu-
tion time t of one of the pipeline stages increases. We identify the affected PS
(PSaffected) as the slowest stage in the current configuration, and this determines
the throughput of the pipeline. The goal of the algorithm is then to rebalance
the pipeline stages by removing layers from the affected PS, to reduce its work.
We note that, removing layers from the affected PS may reduce the length of
the pipeline by 1. We apply two heuristics to find a new configuration:
1) Set the direction for moving work: To remove layers from the affected
PS, we first determine the direction of moving the layers. As the layers of an
inference pipeline execute one after the other (forward pass), we can only re-
move layers from the head or tail of the PSaffected. At the first attempt, the
algorithm does not know which layers of the PSaffected have experienced perfor-
mance degradation due to interference, so we initially remove layers from both
ends, as shown in Lines 6-10, and move them to the preceding and subsequent
pipeline stages respectively. Next, we calculate the sum of the execution time of
PSs on both sides of the PSaffected and set the direction to move layers. We then
find the PS with the lowest execution time PSlightest in that direction, starting
from PSaffected, and move one layer to PSlightest, as shown in Lines 18-20.
2) Avoiding Local optimum Our first heuristic may result in a local, rather
than a global optimum. A possible solution for this is to randomly choose a com-
pletely new starting configuration, and rebalance again. However, this can lead
to loss of information. Since our initial configuration is optimal for the execution
of the pipeline in an interference-free case, in the case of a local optimum, we
deliberately move more layers from the PSaffected to the PSlightest, to create a
different configuration and continue the exploration.
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Algorithm 1 ODIN Algorithm

Require: C, α ▷ C = pipeline configuration
1: T ← throughput(C) ▷ T = throughput of the pipeline
2: Copt ← C ▷ Optimal pipeline configuration
3: γ ← 0 ▷ counter variable
4: while γ < α do
5: PSaffected ← get index(max(t(C)))
6: if γ = 0 then
7: C[PSaffected + 1] += 1
8: C[PSaffected − 1] += 1
9: C[PSaffected] −= 2
10: end if
11: Sleft ← sum(t(C[0], C[PSaffected]))
12: Sright ← sum(t(C[PSaffected + 1], C[N ]))
13: if Sleft < Sright then
14: direction← left
15: else
16: direction← right
17: end if
18: PSlightest ← get index(t(C,PSaffected, direction))
19: C[PSaffected] −= 1
20: C[PSlightest] += 1
21: Tnew ← throughput(C)
22: if Tnew < T then
23: γ += 1
24: else if Tnew = T then
25: C[PSaffected] −= 1
26: C[PSlightest] += 1
27: γ += 1
28: else
29: γ ← 0
30: T← Tnew

31: Copt ← C
32: end if
33: end while
34: return Copt

The extent of exploration is controlled by variable α which is provided as an
input to the algorithm. As the algorithm is applied online, while the inference
pipeline is running, the value of α can be tuned to reduce the number of trials for
faster exploration. Figure 3 shows a timeline of an inference pipeline for VGG16,
executing on four EPs with pipeline stages, where ODIN runs to mitigate the
effects of interference. Initially, there is no interference, the inference pipeline is
balanced with an optimal configuration and achieves its peak throughput. At
time steps 5, 10, and 15, a new workload is co-located on a different execution
place, slowing down the system for the inference pipeline, reducing what we de-
fine as the resource-constrained throughput, i.e. the throughput the inference
pipeline can attain in the presence of interference. At each of these time steps,
ODIN automatically detects the throughput degradation and rebalances the



ODIN: Overcoming Dynamic Interference in iNference pipelines 7

5 10 15 20 25
3.5

4.0

4.5

5.0

Th
ro

ug
hp

ut

0.85

0.90

0.95

1.00

Sy
st

em
 P

er
fo

rm
an

ce

ODIN Resource-constrained throughput Peak throughput System slowdown

Fig. 3: A timeline of a VGG16 inference pipeline, running with ODIN, which
reacts to mitigate interference at time steps 5, 10, 15, and 20.

pipeline until it finds a successful solution. At time step 20, one of the interfering
workloads is removed, and ODIN executes again, to restore the pipeline through-
put by claiming back the resources previously used by the colocated workload.

3.3 Implementation details

Database Creation: In our evaluation, we use simulation to be able to apply
ODIN on any type and size of the underlying system. We, therefore, replace
online monitoring with an offline database. We first collect the execution time of
the m individual network layers of the inference pipelines under consideration,
when executing alone (without any interference), on a real platform. On the
same platform, we collect the execution time of the individual network layers
when executing alongside co-located applications, producing n different inter-
ference scenarios. We then store these collected m × (n + 1) measurements in
a database, and use them in simulation. We consider the real platform to be
a single execution place for ODIN, and simulate multiple execution places of
the same type. To emulate interference, during simulation, we randomly select
an interference scenario for an execution place and look up the corresponding
execution time in the database.

Throughput calculation: We use the measurements in our database D of size
m× n to calculate the throughput of a pipeline, as follows:

T = 1
maxN

i=0

∑P
l=0 D[l,k]

where N is the number of pipeline stages, P is the number of layers in a pipeline
stage, and D[l, k] is the execution time of layer l under the type of interference
k, as recorded in the database D.

Implementation of the least-loaded scheduler (LLS) as a baseline: LLS
is an online interference mitigation technique [9,11,26]. We implement LLS in the
context of pipeline stages, as a baseline to compare against ODIN. We calculate
the utilization of each pipeline stage and move the layers from the most utilized
to the least utilized stage recursively until the throughput starts decreasing. The
utilization of a stage υi is calculated as:

υi =
(
1− wi

wi+ti

)
where ti is the execution time of a pipeline stage, and wi is the waiting time of
the stage, calculated as wi = wi−1 + ti− 1− ti, with w0 = 0.
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Fig. 4: Performance impact

Mode of execution Core assignment on Alder Lake

A CNN:[0-7]
B CNN: [0-7], IBench-MemBW: [0]
C CNN: [0-7], IBench-MemBW: [0-1]
D CNN: [0-7], IBench-MemBW: [0-3]
E CNN: [0-7], IBench-MemBW: [0-7]
F CNN: [0-7], IBench-CPU: [0]
G CNN: [0-7], IBench-CPU: [0-1]
H CNN: [0-7], IBench-CPU: [0-3]
I CNN: [0-7], IBench-CPU: [0-7]
J CNN: [0-3], IBench-MemBW: [4-7]
K CNN: [0-3], IBench-CPU: [4-7]
L CNN: [0-3], IBench-CPU: [4-7], IBench-MemBW[4-7]

Table 1: Interference scenarios

4 Evaluation

4.1 Experimental setup

We execute ODIN in a simulated system for inference serving, which consists
of multiple execution places, and each execution place consists of a fixed number
of 8 cores. To generate our database, we use an Intel i9-12900K (AlderLake)
server, which consists of 8 2xP-cores (Performance) and 8 2xE-cores (Efficient).
We consider the set of 8 P-cores as a single execution place in our system.

For the neural network models we examine as inference pipelines, our database
consists of measurements for each layer without interference, as well as measure-
ments for each layer with 12 different co-located workloads, in different settings.
To create the co-located workloads, we use two interference benchmarks from
the iBench suite [8], the CPU benchmark that stresses the CPU and the memBW

benchmark that stresses the memory bandwidth. We then create our 12 scenarios
of colocation by assigning the network layers and interference benchmarks differ-
ent numbers of threads, and pinning them to different cores. Table 1 showcases
the colocation scenarios considered in our database, and Figure 4 demonstrates
the performance impact of interference for all these colocation scenarios on a
single layer of the VGG16 network model.

For our evaluation, we consider the inference pipelines of three popular CNN
models: VGG16 [27], ResNet-50 and ResNet-152 [13], with 16, 50, and 152 layers
respectively, implemented with the Keras [6] framework.

4.2 Interference mitigation with ODIN

To evaluate the effectiveness of ODIN, we compare its latency and through-
put for different values of α, which sets the extent of exploration, against LLS, in
several interference scenarios. In particular, we consider a system of 4 executions
places of 8 cores each, which serves inference queries with two network models,
VGG16, and ResNet-50. We assume a fixed number of 4000 queries, and in-
duce random interference on different execution places, based on the colocation
scenarios described in Table 1. We consider different values for the frequency (fre-
quency periods of 2, 10, and 100 queries) and duration (2, 10, and 100 queries)
of interference, and evaluate the end-to-end latency and throughput distribution
of each inference pipeline.

Latency: Figure 5 shows the latency distribution of the two inference pipelines
under interference. We observe that ODIN outperforms LLS in all scenarios, de-
livering lower latency. We highlight the effect of the α parameter of ODIN on
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latency. A higher value of α yields lower latency, because the longer exploration
phase allows ODIN to find an optimal configuration. On the other hand, if the
frequency of interference is high, a low value of α is able, in most cases, to produce
an equally good solution with lower exploration time. ODIN α = 10 yields better
latency than ODIN α = 2 this is because the former takes more trials to find a
schedule, however if the frequency of interference is high then it may take longer
to find a solution or end up with sub-optimal solution. We additionally note that
both ODIN and LLS are more effective in cases where interference appears with
lower frequency and for longer periods. This is particularly evident in Figure 5.
For the pair of [frequency period = 2, duration = 2], the distribution of latency
shows many outliers, as an optimal configuration found by the algorithm for one
period of interference may be applied to the next period, where the pattern of
interference has changed. Overall, however, ODIN outperforms LLS in all scenar-
ios, offering 15.8% better latency on average with α = 10 and 14.1% with α = 2.

Throughput: We then compare the throughput of the inference pipelines un-
der interference, for ResNet50 and VGG16, with ODIN and LLS, for the same
interference scenarios, in Figure 6. Again, ODIN offers higher throughput than
LLS in most cases. The case of VGG16 highlights our observation about the
lower performance in the case of high frequency, where all three techniques show
outliers of low throughput, however, ODIN is more able to adapt to interference
of longer duration compared to LLS. We observe additionally that for the case
of the highest frequency period-duration pair [100, 100], LLS and ODIN have
comparable performance, as the near-optimal solutions were obtained with min-
imal changes of the pipeline configurations. Overall, on average, ODIN achieves
19% higher throughput than LLS with any choice of α.

Tail latency: Besides the latency distribution, we separately examine the tail
latency (99th percentile), as it can be a critical metric in inference-serving sys-
tems, and it is also indicative of the quality of the solutions found by ODIN.
Figure 7 shows the distribution of the tail latency across all the queries consid-
ered in the interference scenarios examined in this Section. For both ResNet50
and VGG16, ODIN results in significantly lower tail latencies than LLS. For
the case of VGG16, we additionally observe that a higher value of α for ODIN
can produce better solutions, resulting in lower tail latencies. On average, ODIN
results in 14% lower tail latencies than LLS.

Exploration overhead: Upon detection of interference, both ODIN and LLS
begin the rebalancing phase, during which queries as processed serially, until a
new configuration of the pipeline stages is found. On average, the number of
queries that will be processed serially during a rebalancing phase is 1 for LLS,
and 4 and 12 for ODIN with α = 2 and α = 10 respectively. Figure 8 shows
the percentage of time required to rebalance the pipeline stages, for the window
of 4000 queries. It is evident that, if the type of interference changes frequently
and is short-lived, the overhead of ODIN is higher, as the system is almost con-
tinuously in a rebalancing phase. However, when the duration of interference is
longer, as the effect of interference on the inference pipeline may be the same, re-
balancing may not be triggered, as the selected configuration is already optimal,
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Fig. 5: Inference pipeline latency (lower is better) with ODIN, in comparison
to LLS, over a window of 4000 queries, for interference of different frequency
period and duration.

therefore the rebalancing overhead decreases. Longer frequencies and durations
of interference are favored by both ODIN and LLS.

4.3 Maintaining QoS with ODIN

To evaluate the ability of ODIN to mitigate interference on an inference
pipeline, we consider its quality-of-service (QoS) in terms of SLO violations
[1,25]. We use throughput as the target QoS metric, and consider the SLO level
as the percentage of the peak throughput, i.e. the throughput of the inference
pipeline when executing alone. We then profile the number of queries which
violate this SLO using ODIN and LLS. We additionally compare the SLO vio-
lations with respect to the resource-constrained throughput, i.e. the throughput
achieved when a colocated workload causes interference, and an optimal configu-
ration of the pipeline is found through exhaustive search. We present the results
in Figure 9. Although neither ODIN or LLS are able to offer any performance
guarantees, resulting in many violations when the SLO level is strict, ODIN re-
sults in less than 20% of SLO violations for SLO levels lower than 85%, and can
sustain 70% of the original throughput for any interference scenario, in contrast
to LLS, which, in the extreme case of VGG16, violates even an SLO of 35% of the
original throughput. Additionally, the comparison of SLO violations for the SLO
set w.r.t. the resource-constrained throughput shows that ODIN is able to find
near-optimal configurations in most cases, which are close to those found by the
exhaustive search. Our conclusion is that, while ODIN cannot provide any strict
guarantee for a set SLO, it can sustain high throughput under looser SLOs and
therefore can be an effective solution for overprovisioned systems. For example,
an inference-serving system that can tolerate 10% of SLO violations would re-
quire to overprovision resources by 42% with ODIN, compared to 150% for LLS.
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Fig. 6: Inference pipeline throughput (higher is better) with ODIN, in compari-
son to LLS, over a window of 4000 queries, for interference of different frequency
period and duration.
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Fig. 7: Tail latency distribution of ODIN, in comparison to LLS.
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Fig. 8: Overhead analysis of ODIN, in comparison to LLS.
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Fig. 9: Quality-of-service of ODIN, in comparison to LLS, for different SLO levels.
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Fig. 10: Scalability analysis of ODIN with ResNet152.

4.4 Scalability analysis of ODIN
We finally analyze the scalability of ODIN on high numbers of execution

places, with deep network models that can run with multiple pipeline stages.
For this, we use ResNet152, which consists of 152 layers. We consider, how-
ever, residual blocks as a single unit, so the maximum number of pipeline stages
ResNet152 could run with is 52. We scale the number of execution places from
4 up to 52, and consider a window of 4000 queries, with interference of a fre-
quency period of 10 and duration of 10 queries. Figure 10 shows the latency and
throughput of ODIN for the different numbers of EPs. The latency is not affected
as the number of EPs increases, therefore ODIN is effective at finding optimal
pipeline configurations on multiple execution places. Equivalently, throughput
increases with the number of EPs, suggesting high parallelism of the pipeline,
and for 52 EPs, the achieved throughput is comparable to the peak throughput
of the inference pipeline, under no interference.

5 Conclusion

In this work, we have proposed ODIN, an online pipeline rebalancing tech-
nique that mitigates the effect of interference on inference pipelines. ODIN uti-
lizes the execution times of the pipeline stages to readjust the assignment of
layers to pipeline stages, according to the available resources, rebalancing the
pipeline. We show that ODIN outperforms the baseline LLS in latency and
throughput under different interference scenarios. Additionally, ODIN maintains
more than 70% of the peak throughput of the pipeline under interference, and
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achieves very low SLO violations compared to LLS. Finally, ODIN scales well
with deeper networks and large platforms. ODIN is online and dynamic, and
requires minimal information from the inference pipeline, therefore applies to
any type of inference pipeline and interference scenario. The abstraction of the
hardware into execution places allows ODIN to be applied to different types of
hardware platforms. As future work, we plan to parallelize the pipeline during
rebalancing, and validate the utility of ODIN on heterogeneous platforms.

Acknowledgement:This work has received funding from the project PRIDE
from the Swedish Foundation for Strategic Research with reference number
CHI19-0048. The computations were enabled by resources provided by the Swedish
National Infrastructure for Computing (SNIC) at NSC, partially funded by the
Swedish Research Council through grant agreement no. 2018-05973.

References

1. Alves, M.M., Teylo, L., Frota, Y., Drummond, L.M.d.A.: An interference-aware
strategy for co-locating high performance computing applications in clouds. In:
Symposium on High Performance Computing Systems. pp. 3–20. Springer (2020)

2. Ben-Nun, T., Hoefler, T.: Demystifying parallel and distributed deep learning: An
in-depth concurrency analysis. ACM Computing Surveys (CSUR) (2019)

3. Chang, H.Y., Mozafari, S.H., Chen, C., Clark, J.J., Meyer, B.H., Gross, W.J.:
Pipebert: High-throughput bert inference for arm big. little multi-core processors.
Journal of Signal Processing Systems pp. 1–18 (2022)

4. Chen, Q., Yang, H., Guo, M., Kannan, R.S., Mars, J., Tang, L.: Prophet: Precise
qos prediction on non-preemptive accelerators to improve utilization in warehouse-
scale computers. In: Proceedings of the 22nd ASPLOS’17. pp. 17–32

5. Chen, Q., Yang, H., Mars, J., Tang, L.: Baymax: Qos awareness and increased
utilization for non-preemptive accelerators in warehouse scale computers. ACM
SIGPLAN Notices 51(4), 681–696 (2016)

6. Chollet, F., et al.: Keras. https://keras.io (2015)
7. Crankshaw, D., Wang, X., Zhou, G., Franklin, M.J., Gonzalez, J.E., Stoica, I.:

Clipper: A low-latency online prediction serving system. In: NSDI (2017)
8. Delimitrou, C., Kozyrakis, C.: ibench: Quantifying interference for datacenter ap-

plications. In: IISWC. pp. 23–33. IEEE (2013)
9. Delimitrou, C., Kozyrakis, C.: Paragon: Qos-aware scheduling for heterogeneous

datacenters. ACM SIGPLAN Notices 48(4), 77–88 (2013)
10. Delimitrou, C., Kozyrakis, C.: Quasar: Resource-efficient and qos-aware cluster

management. ACM SIGPLAN Notices 49(4), 127–144 (2014)
11. Devi, D.C., Uthariaraj, V.R.: Load balancing in cloud computing environment us-

ing improved weighted round robin algorithm for nonpreemptive dependent tasks.
The scientific world journal 2016 (2016)

12. Fan, S., Rong, Y., Meng, C., Cao, Z., Wang, S., Zheng, Z., Wu, C., Long, G., Yang,
J., Xia, L., et al.: Dapple: A pipelined data parallel approach for training large
models. In: Proceedings of the 26th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. pp. 431–445 (2021)

13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

14. Huang, et al.: Gpipe: Efficient training of giant neural networks using pipeline
parallelism. Advances in neural information processing systems 32 (2019)

https://keras.io


14 P. Noor Soomro et al.

15. Jeong, E., Kim, J., Tan, S., Lee, J., Ha, S.: Deep learning inference parallelization
on heterogeneous processors with tensorrt. IEEE Embedded Systems Letters 14(1),
15–18 (2021)

16. Kang, D., Oh, J., Choi, J., Yi, Y., Ha, S.: Scheduling of deep learning applications
onto heterogeneous processors in an embedded device. IEEE Access 8 (2020)

17. Ke, L., Gupta, U., Hempsteadis, M., Wu, C.J., Lee, H.H.S., Zhang, X.: Hercules:
Heterogeneity-aware inference serving for at-scale personalized recommendation.
In: HPCA. pp. 141–144. IEEE (2022)

18. Lee, I.T.A., Leiserson, C.E., Schardl, T.B., Zhang, Z., Sukha, J.: On-the-fly pipeline
parallelism. ACM Transactions on Parallel Computing (TOPC) 2(3), 1–42 (2015)

19. Lee, Y., Scolari, A., Chun, B.G., Santambrogio, M.D., Weimer, M., Interlandi, M.:
Pretzel: Opening the black box of machine learning prediction serving systems. In:
OSDI. vol. 18, pp. 611–626 (2018)

20. Li, S., Hoefler, T.: Chimera: efficiently training large-scale neural networks with
bidirectional pipelines. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. pp. 1–14 (2021)

21. Liberty, E., Karnin, Z., Xiang, B., Rouesnel, L., Coskun, B., Nallapati, R., Del-
gado, J., Sadoughi, A., Astashonok, Y., Das, P., et al.: Elastic machine learning
algorithms in amazon sagemaker. In: SIGMOD. pp. 731–737 (2020)

22. Mendoza, D., Romero, F., Li, Q., Yadwadkar, N.J., Kozyrakis, C.: Interference-
aware scheduling for inference serving. In: Proceedings of the 1st Workshop on
Machine Learning and Systems. pp. 80–88 (2021)

23. Narayanan, et al.: Pipedream: Generalized pipeline parallelism for dnn training.
In: Proceedings of the 27th ACM Symposium on Operating Systems Principles.
pp. 1–15 (2019)

24. Olston, C., Fiedel, N., Gorovoy, K., Harmsen, J., Lao, L., Li, F., Rajashekhar, V.,
Ramesh, S., Soyke, J.: Tensorflow-serving: Flexible, high-performance ml serving.
arXiv preprint arXiv:1712.06139 (2017)

25. Romero, F., Li, Q., Yadwadkar, N.J., Kozyrakis, C.: Infaas: Automated model-less
inference serving. In: USENIX Annual Technical Conference. pp. 397–411 (2021)

26. Shaw, S.B., Singh, A.: A survey on scheduling and load balancing techniques in
cloud computing environment. In: ICCCT. pp. 87–95. IEEE (2014)

27. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

28. Soomro, P.N., Abduljabbar, M., Castrillon, J., Pericàs, M.: An online guided tuning
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