
Cluster Comput (2017) 20:2725-2747

Predictive Communication Modeling for HPC Applications

Nikela Papadopoulou · Georgios Goumas · Nectarios Koziris

Received: 11 October 2016 / Revised: 15 February 2017 / Accepted: 14 March 2017

Abstract In this paper, we present a methodology for pre-
dictive modeling of communication of HPC applications.
Communication time depends on a complex set of param-
eters, relevant to the application, the system architecture,
the runtime configuration and runtime conditions. To han-
dle this complexity, we define features that can be extracted
from the application, the process mapping and the alloca-
tion shape ahead of execution, deploy a single benchmark to
sweep over the parameter space and develop predictive mod-
els for communication time on two supercomputers, Vilje
and Piz Daint, using different subsets of our features, ma-
chine-learning methods and training sets. We compare the
predictive power of our models on two common commu-
nication patterns and one application, for various problem
sizes, executions and runtime configurations, ranging from
a few dozen to a few thousand cores. Our methodology is
successful across all tested communication patterns on both
systems and exhibits high prediction accuracy and good-
ness-of-fit, scoring 23.98% in MMRE, 0.942 in RCC and
61.43% in Pred0.25 on Vilje and 21.31%, 0.940 and 66.57%
respectively on Piz Daint, with models that are applicable
just-in-time ahead of the execution of an HPC application.

Keywords Predictive Modeling · Communication Time ·
MPI Applications · Supercomputers · Machine Learning

1 Introduction

As supercomputers grow in cores and computational capac-
ity, the challenge of delivering high levels of performance
at extreme scales is becoming constantly harder. Exascale
systems are expected to have thousands, or even millions

School of Electrical and Computer Engineering
National Technical University of Athens
E-mail: {nikela, goumas, nkoziris}@cslab.ece.ntua.gr

of cores in various configurations; however large classes of
parallel applications that require tight collaboration between
their processing elements, will fail to exploit a decent frac-
tion of this enormous compute power. Parallel performance
depends on the scalability of computation and communica-
tion, with computation scaling remarkably well as it utilizes
multiple nodes, cores, vector units, heterogeneous acceler-
ators or specialized hardware. Contrarily, as the number of
the participating processing elements increases, the cost of
communication may rise enough to outweigh computation
scalability, thus rendering communication a serious obstacle
towards exascale performance.

Predictions of communication time can support code op-
timizations and effective resource allocation on large-scale
systems. The ability to decide between different configura-
tions (e.g. number of nodes, processes per node, network-
ing components in use) has been shown to critically affect
performance [27], energy [6] and resilience [54]. Moreover,
a communication prediction model can be used to support
code optimization and tuning for a wide range of communi-
cation optimization techniques like computation / commu-
nication overlapping [26], message compression [21], com-
munication avoiding [16], hybrid MPI/OpenMP [19, 47]. Fi-
nally, communication performance models are a core com-
ponent in trace-driven simulators for parallel applications,
such as LogGOPSim [31] and SimGrid [11]

Communication performance is dependent on a multi-
tude of factors, and as such, its accurate modeling poses
significant challenges. The communication time for a spe-
cific communication pattern on a specific system heavily de-
pends on the traffic pattern, produced by the mapping of the
application communication graph on the system allocation,
dedicated to the execution of the application, the system ar-
chitecture and its network topology properties. The traffic
created by a single application can be enough to induce con-
tention on network components and congestion on network



2 Nikela Papadopoulou et al.

links, with equivalent delays, however on large-scale sys-
tems, where multiple applications co-execute, they compete
for shared resources, interfere and are able to cause unex-
pected delays to the communication time of each other. The
setup of each system, its communication software, operat-
ing system and resource management components influence
communication time of applications in a complex manner.
Also, computation phases of applications affect communica-
tion time, as they can overlap with communication or skew
communication time due to load imbalance.

Existing approaches for communication modeling include
analytical, empirical and semi-empirical models. State-of-
art analytical models [29, 15, 2] focus on a local view of
communication and rely on round-trip time measurements
to assess communication parameters, such as sender and re-
ceiver overheads, latency and transfer time. Their purpose
is to facilitate hardware / software co-design and commu-
nication software design and optimizations. They can pro-
vide predictions for communication time ahead of execu-
tion, however, as they ignore the network topology, alloca-
tion and any resource-sharing effects, they are not able to
accurately capture the communication time of application
communication phases. A pure empirical approach to com-
munication performance modeling is presented by Jain et
al. [37] and Bhatele et al. [9]. They utilize network perfor-
mance counters and machine-learning techniques to build
communication models for the BlueGene/Q. This approach
attains significantly higher accuracy than analytical models
on load-balanced applications. On the downside, as their
models rely on post-execution performance counter mea-
surements, they can only be used for explanatory and not
predictive purposes. Ghavari et al. [24, 25] focus on pre-
dictive modeling and provide a semi-empirical solution for
communication time prediction, extending Hockney’s latency-
bandwidth analytical model with empirical parameters which
capture topology attributes, contention and congestion ef-
fects on each system. We evaluate this semi-empirical ap-
proach in our experimental results. In our previous work
[45], we follow an empirical approach and construct multiple-
variable regression models for communication time predic-
tion on a large-scale system, based on descriptive metrics
from the application and its mapping on the system. We ex-
tend this approach with a multitude of additional features for
communication time, automated machine-learning methods
for model building and test it on an additional architecture.

In this paper we propose a methodology for the con-
struction of empirical predictive models for point-to-point
communication of HPC applications. Our approach aims at
predicting the time for an entire communication phase of
an application and offers predictions before the execution
of the application. To our knowledge, this is the first ap-
proach to provide communication modeling that predicts the
communication of a wide set of point-to-point communi-

cation patterns without any customization, ahead of execu-
tion, delivering significant prediction accuracy on two dif-
ferent architectures. To accomplish this, we consider fea-
tures that affect communication performance taken from the
application characteristics, its mapping on the target system
and the configuration of the underlying system architecture
(Section 3.2). We construct a simple benchmark to create a
generic training set for use across all tested point-to-point
communication patterns (Section 3.3) and deploy machine-
learning methods to construct a number of predictive models
for communication time, that expose different levels of ac-
curacy and applicability (Sections 3.4, 3.5). We apply our
methodology on two large supercomputers with state-of-art
interconnection networks, i.e. Vilje, an InfiniBand SGI Altix
system and Piz Daint, a Cray XC30 system (Section 4).

We evaluate our predictive models for various communi-
cation phases of representative HPC kernels and real-world
applications, for multiple configurations and problem sizes
and achieve remarkably accurate predictions across this wide
experimental setup. Throughout this evaluation, we also val-
idate two significant assumptions that have driven our work:
a) generic benchmarking that makes our methodology ap-
plicable to multiple applications is adequate for training an
accurate model on both platforms, b) a predictive commu-
nication model needs to consider multiple features that well
describe the traffic pattern, in order to incorporate the com-
plex effects of communication over a large-scale system.
We compare the predictive ability of our models against a
baseline analytical model and semi-empirical models (Sec-
tion 4.2) following the methodology proposed by Ghavari et
al. [24, 25]. Our empirical approach outperforms any other
approach in terms of prediction accuracy, achieving MMRE
(Mean Magnitude of Relative Error), RCC (Rank Correla-
tion Coefficient) and Pred0.25 (percentage of predictions with
relative error within the range of ±25%) scores of 23.98%,
0.942 and 61.43% on Vilje and 21.31%, 0.940 and 66.57%
on Piz Daint.

2 Problem definition

Our work targets the prediction of communication time for
communication phases of applications, as seen by all in-
volved processes. In the following paragraphs, we present
our target platforms, the challenges of predicting communi-
cation time on large-scale systems and the parallel applica-
tions that we target.

2.1 Target platforms

Our modeling methodology targets large-scale systems with
high-end interconnection networks. In this work we consider
two platforms, Piz Daint, a Cray XC30 system, built with



Predictive Communication Modeling for HPC Applications 3

the proprietary Cray Aries interconnect that implements a
dragonfly topology, and Vilje, an SGI Altix system, built
with InfiniBand FDR that implements an enhanced hyper-
cube topology. The two platforms are quite diverse in their
network architecture and topology and are typical represen-
tatives of about 52% of current top-tier supercomputers1.
InfiniBand is the most popular interconnection technology,
used by 44.4% of the systems in the Top500 list, while Cray
Aries is steadily gaining ground on the Top500 list, due to
its promising topology.

Piz Daint2, the Cray XC30 installation at the Swiss Na-
tional Supercomputing Center (CSCS), comprises 5272 nodes,
each equipped with an 8-core Intel Sandy Bridge CPU, an
NVIDIA Tesla K20X GPU and 32GB of memory. The core
component of the fabric is the Aries SoC, with four NICs
connecting four nodes, forming a blade. Sixteen blades are
accommodated on a chassis. A pair of cabinets, each host-
ing three chassis, forms a group of the network. Aries chips
within a group are interconnected in an all-to-all topology
via the chassis backplane and copper cables, while the 14
groups of Piz Daint are interconnected in an all-to-all topol-
ogy through optical cables of slightly lower bandwidth. Con-
gestion control is achieved through adaptive packet-level rout-
ing: a non-minimal path is selected if the estimated link load
is lower than that of the minimal path. More details on Cray
Aries can be found in [3]. The default MPI setup for Piz
Daint is Cray MPICH.

Vilje3 is an SGI Altix ICE X system at the Norwegian
University of Science and Technology (NTNU), compris-
ing 1404 nodes of two 8-core Intel Sandy Bridge CPUs and
32GB of memory. The basic building block of the system
is the Individual Rack Unit (IRU), which hosts 18 nodes
and two 36-port FDR InfiniBand switches. Each IRU is a
node of the hypercube topology. IRUs are stacked in groups
of eight and interconnected in a 3D-hypercube topology to
form a rack. The 19.5 racks of the system form a dual-rail,
8D enhanced hypercube, where redundant links are used to
connect switches at the lower dimensions of the hypercube,
providing higher overall bandwidth. Congestion control is
achieved through a signaling mechanism: the source node is
notified to throttle its injection of packets whenever conges-
tion is detected on a switch on the path to the destination.
The default MPI setup for Vilje is SGI MPI implementation.

2.2 Challenges of communication prediction

An effective predictive model maximizes accuracy and ap-
plicability. Accuracy captures the ability of the model to ap-
proximate the actual communication time with tolerable er-

1 http://www.top500.org (June 2016)
2 http://www.cscs.ch/computers/piz daint piz dora/index.html
3 https://www.hpc.ntnu.no/display/hpc/Vilje

rors. Applicability refers to the scope of use of the model,
i.e. the capacity of the model to support a specific task. In
other words, applicability is about the availability in time of
the prediction and the relevant ease-of-use. The tuning fac-
tor for the two attributes is the awareness of the model to the
factors that affect communication performance. High aware-
ness of these factors is expected to improve accuracy while
curtailing applicability, as more information is required, and
information becomes progressively available in the lifetime
of an application. The optimal trade-off between accuracy
and applicability is defined by the purpose of the model.

Communication performance is a result of the coaction
between the application, the interconnection network, the
system software and the mapping of the application on the
system. Capturing the complexity of this coaction in a model
is highly challenging and one needs to carefully glean appro-
priate features, with varying awareness, from a huge space
of parameters. The application exposes its own communi-
cation pattern and a specific problem size and decompo-
sition. The interconnection network comes with a specific
backbone architecture consisting of network interface cards,
switches, routers, links, etc, with their number determined
by the system scale and topology. The system software in-
cludes high and low level communication protocols, the OS
and network drivers, protocol-switching thresholds, lengths
of buffers and queues for communication and more. For one
execution of an application, the scheduler of the system un-
dertakes the allocation of resources and the placement of
the processes. This application mapping interacts with the
system to produce a specific traffic pattern which ultimately
determines communication performance.

A minimal communication model would require appli-
cation - centric and architecture - centric information (e.g.
communication pattern and topology respectively) and would
be applicable at static time (or early at runtime, once the
input parameters of the application are set). However, to
achieve the highest possible accuracy, a model should in-
corporate additional critical information being part of the
traffic pattern, that more accurately captures the distribution
of the data flow within the network. The shaping of the traf-
fic pattern demands knowledge of the process mapping and
the allocation shape, which becomes available just-in-time
before the execution of the application. Alternate process
mappings may produce very diverse traffic patterns, with a
varying outcome of communication performance, as the dis-
tribution of traffic changes and different points of the net-
work are stressed [37].

Although knowing the traffic pattern is necessary in or-
der to incorporate the complex effects and interactions of
the application and the system into a prediction model, even
with this knowledge at hand, accurate communication time
prediction is undermined by non-deterministic sources of
time variability that occur on real-world systems, which can



4 Nikela Papadopoulou et al.

only be monitored at runtime. Allocations that populate more
networking components are more prone to interference with
co-running applications [8, 38] and may suffer from per-
formance degradation, due to contention on these compo-
nents. On Vilje, performance degradation may occur due
to switch sharing. On Piz Daint, time variability may oc-
cur due to non-deterministic routing. In addition to inter-
application contention, system noise, originating from the
nodes due to OS services or due to a low byte-to-flop ra-
tio [20], causes a delay that may propagate throughout the
communication phase or be overlapped by regular commu-
nication synchronization delays [30]. Time variability that
occurs due to these runtime effects cannot be captured by
any predictive model and thus, prediction accuracy will be
subject to this limitation.

The challenges in modeling and predicting communica-
tion time increase by the presence of computation and the
interleaving of computation and communication phases in
real-life applications. First, load imbalance in computation
causes direct and indirect delays in communication [10].
While direct delays can possibly be estimated if computa-
tion time is known, a direct delay in communication of one
process due to load imbalance propagates throughout the
communication phase, skewing the communication phase.
The total delay can only be identified and characterized with
post-mortem trace analysis, as in [51, 10]. Second, compu-
tation and communication may be overlapped. In this case,
the time consumed on a communication phase depends on
the available time for hiding communication, on the amount
of computation that is overlapped and on data dependen-
cies between computation and communication phases [48].
Modeling communication time when computation and com-
munication are overlapped also requires knowledge of ex-
act times of request arrivals for send / receive operations
[13]. To our knowledge, there is no prior work in communi-
cation time prediction that considers applications with load
imbalance or computation / communication overlapping, as
in such cases, the notion of communication as a phase col-
lapses. The effect of computation on communication time
can be taken into account only in holistic approaches for
scalability modeling of parallel applications, as in [50]. Some
recent studies perform trace analysis to identify application
phases, including communication phases, either by identify-
ing logical phases which do not appear as temporal phases
due to some source of delay [36], or by segmenting traces
into meaningful clusters of events [1].

HPC applications expose numerous communication pat-
terns, with different characteristics, which then result into
more or less intricate traffic patterns. Based on the type of
communication operations, communication patterns may be
point-to-point or collective. For collective operations, the
pattern (number of peer processes, number of messages per
process) is predefined, however the message size can vary

compute()
for ms in MessagesToSend do

pack(ms)
end for
for mr in MessagesToReceive do

MPI Irecv(mr)
end for
for ms in MessagesToSend do

MPI Isend(ms)
end for
MPI Waitall(MessagesToSend, MessagesToRecv)
for mr in MessagesToReceive do

unpack(mr)
end for

Fig. 1 Pseudocode for each MPI process in the application model

for vector collective operations and they may be overlapped
with computation in their non-blocking version, in which
case collective communication does not occur as a phase.
Point-to-point patterns that appear in HPC applications can
be roughly classified into three large categories. The first
category consists of patterns where all processes exchange
roughly the same number of messages with a specific set
of peer processes and communication occurs as a phase.
These patterns appear in applications solving problems on
structured or unstructured grids and are known as nearest-
neighbor patterns, e.g. stencils, halo exchanges or particle
exchanges. The maximum number of messages exchanged
results from the numerical method, the geometry of the grid
and the problem decomposition, while the message sizes can
vary, also due to the geometry or the type of the problem.
They are found in numerous applications, such as conju-
gate gradient solvers, adaptive mesh refinement, the multi-
grid cycle, molecular dynamics, hydrodynamics and more.
The second category regards patterns that arise in pipelined
wavefront applications, as is the LU decomposition and par-
ticle transport codes. These patterns are usually regular in
the number of communicating processes and maximum num-
ber of messages, as are nearest-neighbor patterns, however
communication is overlapped with computation, due to the
structure of the problem, and thus, communication does not
occur as a phase. The third category consists of patterns
that arise in applications which involve sparse matrices or
graphs, as is the Sparse Matrix-Vector multiplication, con-
jugate gradient solvers and graph traversals. These patterns
are the most irregular in terms of communicating processes,
number of messages per process and message sizes, as those
depend on the structure of the sparse matrix or the graph,
and communication may or may not occur as a phase.

2.3 Target applications

To cope with the extremely high challenges of commu-
nication time prediction, we focus our work on the family of
HPC applications, where communication occurs as a phase.



Predictive Communication Modeling for HPC Applications 5

We consider applications with point-to-point communica-
tion patterns, where all MPI processes exchange roughly the
same number of messages, as are nearest-neighbor commu-
nication patterns. Such patterns arise in a multitude of HPC
applications that solve problems on structured and unstruc-
tured grids, such as QCD simulations, weather simulations,
hydrodynamics, molecular dynamics and others. In this way,
we are able to provide a methodology that addresses the core
challenges of communication modeling, and provide accu-
rate models for a wide class of HPC application phases. As
our target is to predict communication time for a communi-
cation phase, we consider applications where computation
effects do not influence communication time. In Section 6,
we discuss how our methodology can be extended to predict
irregular and collective communication patterns.

A kernel for a simplified application model with a sin-
gle computation and communication phase is listed as pseu-
docode in Fig. 1. As most HPC applications are iterative,
multiple distinct communication phases may appear within
a single iteration and then repeatedly appear in every itera-
tion. The end-goal of our work is to predict communication
time for any communication phase i of an application t̂i and
provide a prediction for the total communication time of the
execution T̂ = ∑i t̂i. We need to note that, although our work
is motivated by and applied to typical HPC applications run-
ning on large-scale supercomputers, our approach is also ap-
plicable to any type of application with point-to-point com-
munication, as is, for example, the case of large-scale graph
processing with the bulk-synchronous model [52] in frame-
works like Hama4 and Pregel [40].

3 Predictive communication modeling

As discussed in Section 2, the parameter space for commu-
nication performance is large and complex. The first step
towards communication time modeling is to enumerate and
quantify communication-descriptive features. We investigate
features that can lead to predictive models, applicable just-
in-time before the application execution, thus features which
can be extracted up to just after the allocation of processes
(and before the actual execution of the application). Then,
we employ a benchmarking step to collect a set of measure-
ments which will serve as a training set for the model con-
struction. In the third step, we decide upon effective machine-
learning methods, perform feature selection and build mod-
els with different numbers of features, methods and training
sets. The specifics of this methodology are presented in the
following paragraphs.

4 http://hama.apache.org

3.1 Machine-learning preliminaries

3.1.1 Supervised learning

We assume there exists a vector of features X =(x1,x2, ...,xk)

and a function f which determine the communication time t
of an application, namely t = f (X)+ε . The end-goal of our
work is to synthesize an approximation f̂ of the function f
to predict communication time t̂ = f̂ (X) for any known or
unknown input X , with an error ε = y− ŷ that we can tol-
erate. The task falls under the category of supervised learn-
ing, where a learning algorithm utilizes a training set Tr =
{(Xi, ti), i = 1, ...,n} to learn by example the approximation
f̂ [23]. Since the output t is continuous, the task also falls
under the category of regression.

3.1.2 Feature selection

For each system we examine, we consider a plethora of fea-
tures taken from the application and its mapping on the sys-
tem. However, all these features are not necessarily signifi-
cant for the prediction of communication time. When single-
variable modeling is pursued, one needs to identify only
one important feature, highly-correlated with the output. In
the case of multiple variable modeling, systematic feature
selection can assist in understanding the data and improv-
ing prediction accuracy [12]. Techniques for feature selec-
tion include association filtering and recursive feature elim-
ination, and opt to eliminate redundant or irrelevant fea-
tures which would add redundant information or noise to the
model. The result of feature selection is a vector of features
X ′ = (x1,x2, ...,xk′),k′ < k.

3.1.3 Methods for regression

There exist multiple methods for regression, with the sim-
plest building linear models of the form t̂(X ′′)= b0+∑ k′′

i=1bix′′i ,
where the elements of X ′′ include features from the origi-
nal vector X , interactions between them, polynomial or non-
linear transformations and possibly dummy variables. This
method requires the specification of the function form by
the user, while the coefficients are then computed through
least squares. A linear model can be very effective for pre-
diction, however it may be arbitrarily complex in terms and
branches, especially in the case of multiple variables. More-
over, the user is responsible for identifying all underlying re-
lationships between the features at hand and the output (i.e.
in our case, communication time). On the other hand, lin-
ear models provide a closed form function, where the rela-
tionship between a feature and communication time is clear,
while ensemble methods only provide ranking scores for the
selected features.



6 Nikela Papadopoulou et al.

Ensemble methods based on decision trees are more re-
cent methods which have been proven to work well for re-
gression problems. Decision trees are utilized by ensemble
methods [55] as weak learners. Bagging methods, such as
random forests and extremely randomized trees, build multi-
ple decision trees simultaneously which are then averaged to
reduce variance. Boosting methods, such as AdaBoost and
Gradient Boosting Machines subsequently build weak esti-
mators, with each new one focusing on points neglected by
the previous one, in order to reduce bias. The main advan-
tage of ensemble methods is that they provide a black-box
approach to regression.

3.1.4 Evaluation metrics

To evaluate a model for communication time, we focus on
its ability to predict communication time for any given com-
munication pattern and execution configuration with a min-
imum error. For this purpose, we consider and examine sev-
eral evaluation metrics. In our workflow, a model predicts
the communication times t̂i, i = 1, ...,m for a set of points
T = {(Xi, ti), i = 1, ...,m}, collected from benchmark or ap-
plication runs on the target system. The relative prediction
error is then defined as:

ei = (t̂i − ti)/ti

We examine the distribution of the relative prediction errors,
along with the minimum, median and maximum relative er-
ror values. We also take into account the Mean Magnitude
of Relative Errors MMRE [14], as a numeric alternative to
the distribution of relative errors:

MMRE =
∑m

i=1 |ei|
m

To assess the accuracy and goodness-of-fit of a predic-
tive model, we examine the percentage of predictions at level
0.25, Pred0.25:

Pred0.25(%) =
#predictions with |ei| ≤ 0.25

#predictions
∗100%

and the rank correlation coefficient RCC:

RCC = ∑
1≤i≤m

∑
1≤ j≤m

concordanti j/
m(m−1)

2

where

concordanti j =


1, i f ti < t j and t̂i < t̂ j
1, i f ti > t j and t̂i > t̂ j
0, otherwise

... MPI Process..

Node/HCA

..

Switch

..

Rack

.
Class A

.

Class B

.

Class C

... MPI Process..

Node

..

Aries SoC

..

Chassis

..

Group

.
Class A

.

Class B

.

Class C

Fig. 2 Classes of features for the two systems, (a) Vilje and (b) Piz
Daint. Class A features capture traffic from the processes, class B fea-
tures capture traffic from the nodes, while class C features differentiate
for the two systems and capture traffic on the upper levels of the topol-
ogy. Notice there are more levels on Piz Daint than on Vilje.

Table 1 Class A Features: Cross-Platform

Feature Name Description

n Nodes Number of nodes of the allo-
cation

ppn Processes Per Node MPI processes per node of
the allocation

l Message Length The length (in bytes) of mes-
sages sent by each process
[max]

PD Process Data Data (bytes) sent by each
process [max]

PM Process Messages Number of messages sent by
each process [max]

Pred0.25 ranges from 0 to 100% and RCC ranges from 0 to 1,
with higher values denoting higher accuracy and goodness-
of-fit. Pred0.25 measures prediction accuracy at a fixed thresh-
old for the relative error (in our case, 0.25), while RCC mea-
sures how well the ordering of the data is predicted. A high
value of Pred0.25 indicates that the accuracy of the model is
high for the partical set of points: most of the relative errors
concentrate around 0%. A high value of RCC implies that
the model is able to distinguish between different communi-
cation configurations; if one communication configuration
leads to higher communication time than another, a model
with a high RCC score also predicts higher communication
time for the first communication configuration.

3.2 Classes of features

In our first step towards predictive communication model-
ing, we define quantifiable features for the application com-
munication profile, traffic pattern and allocation shape for a
given execution setup on the underlying system. We divide
our features into three classes by their level of awareness to
the application communication profile, its mapping and the
system architecture. This division allows us to construct pre-
dictors with different degrees of applicability and potentially
prediction accuracy. Class A features are collected from the
application communication profile and its execution config-
uration. Values for these features can be extracted at static



Predictive Communication Modeling for HPC Applications 7

time with minimal effort and thus any predictor built upon
class A features has high applicability, e.g. it can support
decision making regarding application design and algorith-
mic optimizations. Class B augments class A with features
related to the mapping of the processes of the application on
the given node allocation for the specific execution config-
uration. Class B features measure the “local” traffic pattern,
at the node level, but are unaware of the node allocation and
the system architecture. Finally, Class C features sketch the
traffic pattern from the application side, as well as the alloca-
tion shape. These features can be extracted only at runtime,
after the system scheduler provides the node allocation, just-
in-time before the execution of the application. Thus, any
model built with Class C features is still predictive, incorpo-
rates nonetheless high awareness to various parameters that
affect communication performance.

The majority of the defined features capture the traffic
(in bytes) and message rate (number of messages) injected
from processes to nodes and to upper levels of the intercon-
nection network. Fig. 2 demonstrates an abstraction of how
the classes are specified for the two machines, exposing dif-
ferent levels of awareness of the system’s topology and or-
ganization. All features related to data and messages cap-
ture the outgoing traffic in bytes and number of messages
from the processes of the application on system components
(nodes, switches, Aries SoCs etc.) utilized by the allocation
for the specific execution. Class A features are presented in
Table 1. These features restrict themselves to knowledge ex-
tracted from the application, namely the application commu-
nication profile (message length, process data and messages)
and the size of the allocation, the number of nodes and pro-
cesses per node, which are provided by the user. Class B fea-
tures, presented in Table 2 are aware of the mapping of the
application on the allocated cores and nodes, thus include
the intranode data and messages that may stress the mem-
ory system, internode data and messages that may induce
contention due to limited injection bandwidth or limited ca-
pacity of network interface cards [9], as well as the total
data and messages, denoting the total internode communi-
cation volume of the application. Features of classes A and
B are cross-platform. Class C features for Vilje are presented
in Table 3. Apart from data and messages for switches and
racks of the allocation, which can reveal congestion on inter-
mediate switches, we also consider the number of switches,
racks, the average number of nodes per switch and the av-
erage number of switches per rack, as descriptive features
of the allocation shape, which is usually irregular on Vilje.
Similarly, we define Class C features for Piz Daint in Ta-
ble 4. The switches and racks of Vilje are substituted by the
Aries SoCs, the chassis and groups of Piz Daint. As in Piz
Daint routing is adaptive and packets select a minimal or
non-minimal path, depending on current link congestion, we
additionally define the group-to-group data and messages,

Table 2 Class B Features: Cross-Platform

Feature Name Description

ND Node Data Data (in bytes) injected from
a node to the network [min,
avg, max]

NM Node Messages Messages injected from a
node to the network [min,
avg, max]

iND Intranode Data Data (in bytes) sent intranode
[min, avg, max]

iNM Intranode Messages Messages sent intranode
[min, avg, max]

TD Total Data Data (in bytes) injected by all
nodes of the allocation

TM Total Messages Messages injected by all
nodes of the allocation

Table 3 Class C Features: Vilje

Feature Name Description

sw Switches Number of switches where
the nodes of the allocation re-
side

r Racks Number of racks where the
nodes of the allocation reside

n/sw Nodes per Switch Nodes per switch in the allo-
cation [avg]

sw/r Switches per Rack Switches per rack in the allo-
cation [avg])

SD Switch Data Data (in bytes) injected from
a switch to the network [min,
avg, max[

SM Switch Messages Messages injected from a
switch to the network [min,
avg, max]

iSD Intra-Switch Data Data (in bytes) sent between
nodes attached on the same
switch [min, avg, max]

iSM Intra-Switch Messages Messages sent between
nodes attached on the same
switch [min, avg, max]

RD Rack Data Data (in bytes) sent from a
rack [min, avg, max]

RM Rack Messages Messages sent from rack
[min, avg, max]

iRD Intra-Rack Data Data (in bytes) sent between
switches residing on the same
rack [min, avg, max]

iRM Intra-Rack Messages Messages sent between
switches residing on the
same rack [min, avg, max]

as indicative of excessive inter-group traffic that could stress
the optical link between two groups and induce non-minimal
routing. We should note that values for features like ppn, n,
sw or g, that refer to the allocation are constant for an appli-
cation execution, while the values for all other features are
constant for a communication phase.



8 Nikela Papadopoulou et al.

Table 4 Class C Features: Piz Daint

Feature Name Description

c Chassis Number of chassis where the
nodes of the allocation reside

g Groups Number of groups where the
nodes of the allocation reside

c/g Chassis per Group Chassis per group in the allo-
cation [avg]

AD Aries Data Data (in bytes) injected from
an Aries SoC to the network
[min, avg, max]

AM Aries Messages Messages injected from an
Aries SoC to the network
[min, avg, max]

iAD Intra-Aries Data Data (in bytes) sent between
nodes attached on the same
Aries SoC [min, avg, max]

iAM Intra-Aries Messages Messages sent between
nodes attached on the same
Aries SoC [min, avg, max]

CD Chassis Data Data (in bytes) sent from a
chassis [min, avg, max]

CM Chassis Messages Messages sent from a chassis
[min, avg, max]

iCD Intra-Chassis Data Data (in bytes) sent between
Aries SoCs residing on the
same chassis [min, avg, max]

iCM Intra-Chassis Messages Messages sent between Aries
SoCs residing on the same
chassis [min, avg, max]

GD Group Data Data (in bytes) sent from a
group [min, avg, max]

GM Group Messages Messages sent from a group
[min, avg, max]

iGD Intra-Group Data Data (in bytes) sent between
chassis of the same group
[min, avg, max]

iGM Intra-Group Messages Messages sent between chas-
sis of the same group [min,
avg, max]

GGD Group to Group Data Data (in bytes) sent between
two groups [max]

GGM Group to Group Messages Messages sent from a group
[max]

Table 5 Parameter space for benchmark executions on Vilje and Piz
Daint

Parameter Vilje Piz Daint

n 8-256 8-256 8-128 8-256
ppn 1-16 1-16 1-8 1-8
l 16B-

16MiB
16B-
16KiB

16B-
16MiB

16B-
16KiB

PM 1-4 1-4 1-4 1-4
#executions 3 2 3 4
#points 9210 6912

3.3 Benchmarking

Benchmarking is a core process in our methodology as
it allows us to explore the potential relationship between
the defined features and communication time, observe ubiq-

for l = 1 to max length do
for iter = 1 to Iterations do

MPI Barrier(MPI COMM WORLD)
gettimeofday(start time)
for m = 1 to ProcessMessages do

MPI Irecv(pong[m], l,
MPI UNSIGNED CHAR, pair[m],...)

MPI Isend(ping[m], l,
MPI UNSIGNED CHAR, pair[m],...)

end for
MPI Waitall(2*m, ...)
gettimeofday(stop time)
time[iter]=stop time - start time

end for
sort(time)
local reported time=time[3*Iterations/4]
MPI Reduce(local reported time,

global reported time, MPI MAX...)
end for

Fig. 3 Benchmark core operations and timing

uitous performance effects, and finally build communica-
tion models for the target system. Benchmarking supplies
an incisive dataset to train predictive models. We devise our
benchmark to resemble the communication phase of an ap-
plication and to be parametric to various features, allowing
us to sweep an ample space of communication configura-
tions and traffic patterns. Note that the benchmarking step
needs to be applied only once (e.g. after the initial deploy-
ment of the execution platform) and thus its complexity and
execution overhead is not on the critical path.

Our benchmark builds upon WICON [7], where random
node pairs, with a single process hosted on each node, com-
municate in a ping-pong fashion simultaneously. WICON’s
goal is to quantify message latencies in the presence of con-
tention. To capture contention and congestion effects due to
multiple processes per node, we augmented the benchmark
so that multiple processes hosted on each node communicate
simultaneously with processes hosted on the paired node.
To break the symmetry of this scheme, we switched from
random node pairs to random MPI rank pairs, creating a
fully randomized communication pattern. Moreover, to as-
sess the impact of the number of messages sent by each pro-
cess, we paired each process with M other randomly chosen
processes, resulting in a scheme where each process sends
M messages of the same length to M random processes and
receives a reply. We also switched from blocking to non-
blocking communication, as the latter allows overlapping at
the system level between consecutive message transmissions
and is a common practice for most MPI applications. The
pseudocode for the core benchmark operations is listed in
Figure 3.

Our benchmark allows us to sweep the parameter space
explicitly for four class A features: the number of nodes (n),
the number of processes per node (ppn), the message length
(l) and the messages per process (PM). Implicitly, by sweep-



Predictive Communication Modeling for HPC Applications 9

..

Initial
Training Set
(Processed

Benchmark Data)

.. Feature Selection.

Training Set
(Processed

Benchmark Data with
reduced features)

.. Model Training.. Model.. Model Evaluation.
If Class C

.

If Class A or Class B

.

Change GBRT parameters

.

If not accurate

.

Change feature selection parameters

.

Recursive Feature Elimination
with Support Vector Regression

scikit-0.16.1

.

Gradient Boosted
Regression Trees
scikit-0.16.1

.

MMRE
Pred0.25
RCC

Fig. 4 Our model building process.

ing these four features, a large parameter space for all class
A and B features is swept as well. Values of class C features
are related to the allocation given to its job by the system
schedulers, so there are two options for sweeping the param-
eter space for class C features: either to explicitly request
specific node allocations with some specific configuration,
or to execute the benchmark multiple times on different al-
locations, randomly picked by the scheduler. We followed
the latter approach for both systems, as on Vilje, the former
approach is not applicable. We performed three executions
of the benchmark on both systems, as well as additional ex-
ecutions for short message lengths, for which we observed
high variability for different allocations. The details of the
benchmarking process are presented in Table 5. This dataset
collected through benchmarking associates all the features
with communication time and serves as the training set for
the construction of the communication model on each sys-
tem. The wall-clock time to collect the training set for each
system is less than four hours.

To collect communication time measurements, the bench-
mark calls an MPI Barrier before starting the timer (see
Fig. 3), to avoid measuring process skew, (i.e. idle time),
as communication time. We should note that although the
MPI Barrier is commonly utilized for process synchroniza-
tion [33], its synchronization quality depends on the system
and alternative synchronization methods can provide better
measurement quality. Each process measures its local com-
munication time for each iteration and reports the 3rd quan-
tile of the times measured across all iterations. Through re-
duction, the root process reports the maximum of the locally
reported times that designates the completion of the commu-
nication face. We chose the 3rd quantile of the local commu-
nication time as a good trade-off between the average and
the maximum time among iterations, to avoid extreme out-
liers that could occur for a certain iteration and at the same
time to take into account some discrepancies and unexpected
increases in communication time due to noise, congestion or
interference from nearby jobs.

3.4 Model building

3.4.1 Ensemble methods

We consider several machine-learning techniques for regres-
sion ranging from multiple variable regression, to ensem-
ble and boosting methods. We also experiment with sev-
eral methods for feature selection to properly incorporate
the most meaningful features out of the ones discussed in
Section 3.2. For multiple variable regression, feature selec-
tion is inevitable, as it is part of the process to decide upon
the final model form. For ensemble methods, feature selec-
tion is an optional pre-processing step, assisting in reducing
training time, as it limits the set of available features.

We prioritize ensemble methods such as Random Forests,
Extra Randomized Trees, Gradient Boosting Regression Trees
and AdaBoost Regression, all available in Python’s scikit-
16.1 [46]. Automation of the model building process is the
clear advantage of these methods which, in addition, elimi-
nates the need to identify linear and non-linear relationships
between the features and the target, interactions between
features, high-order terms and parameter spaces that may
more precisely describe the relationship between a feature
and the target. Also, as ensemble methods combine multi-
ple models, they improve in accuracy and robustness, com-
pared to a single model[41]. These properties make ensem-
ble methods an attractive solution for cross-system model-
ing, requiring no special effort to fit a model for each par-
ticular system. On the other hand, ensemble methods only
provide a ranking of importance for the selected features
and do not reveal the exact relationship between each fea-
ture and the target, communication time. Finally, we note
that the training overhead was negligible as the training time
itself was low (i.e. less than two minutes for the most time-
consuming methods) and it needs to be applied only once.
The modeling process is depicted in Figure 4.

3.4.2 Feature selection

We start the model construction by feature selection on Class
C features. Feature selection for Class A and Class B pre-



10 Nikela Papadopoulou et al.

(a) GBRT-Class A-Benchmark (b) GBRT-Class B-Benchmark (c) GBRT-Class C-Benchmark

Fig. 5 Feature ranking for the benchmark-trained GBRT models on Vilje.

(a) GBRT-Class A-Benchmark (b) GBRT-Class B-Benchmark (c) GBRT-Class C-Benchmark

Fig. 6 Feature ranking for the benchmark-trained GBRT models on Piz Daint.

dictors is not necessary, as the default feature selection of
the methods we apply is effective for the limited number
of features of these classes. We rank Class C features using
recursive feature elimination based on support vector regres-
sion, a method first proposed in [28] for genetic diagnostics.
Support vector regression provides high generalization abil-
ity, while recursive feature elimination is important to avoid
high ranking of features that overfit the training set. We ex-
periment with feeding 15 to 40 of the highest-ranked fea-
tures as inputs to the aforementioned methods. We select a
similar number of features for both systems (24 features for
Vilje and 26 for Piz Daint), as the size of the training set is
also similar, yet selected features differ on the two systems.
On Vilje, the selected features are more diverse and include
features for the allocation shape (e.g. r and sw/r), while on
Piz Daint all selected features are related to the data volume
(e.g. ND and AD).

3.4.3 Modeling with Gradient Boosted Regression Trees

After feature selection, we experimented with the methods
discussed before, and promoted Gradient Boosting Regres-
sion Trees (GBRT) as the most appropriate one for our prob-
lem and training set. GBRT is a boosting method, where
a new weak learner, i.e. a regression decision tree, is it-

eratively fit on the negative gradient of a given loss func-
tion. GBRT offers high accuracy, alongside with automation
and special tuning parameters that assist us in overcoming
the perks of communication time prediction. We utilize the
least absolute deviation as the loss function, which allows
for robustness to outliers. This property of the loss function
is critical for our task, as noise is present in measurements
of communication time and can result in several outliers.
To prevent our models from overfitting to the training set,
we perform regularization by employing shrinkage, namely
defining a learning rate by which the impact of each consec-
utive boosting iteration is shrunk, and by tuning the shape of
the decision trees. To find the optimal configuration for the
GBRT method and the optimal predictor, according to our
training set, we test the method with different values for the
learning rate (learning rate) and the minimum samples per
leaf (min samples leaf ) of the decision trees and minimum
samples at which a split is performed (min samples split),
as well as different numbers of decision trees (n estimators)
and select the values that gave the model with the best fit,
according to the evaluation metrics defined in Section 3.1.
The range of values tested and the selected values for the pa-
rameters of the method for the two systems are presented in
Table 6, along with the number of features (features-classX)
utilized by the model for each class. We denote the mod-



Predictive Communication Modeling for HPC Applications 11

els constructed with GBRT as GBRT-Class A, GBRT-Class
B and GBRT-Class C, according to the class of features and
the utilized training set.

Summarizing, to build a predictive model for commu-
nication time on a target system, we take the following ac-
tions: a) we define a number of features for the traffic pattern
and the allocation shape and divide them in three classes,
depending on their awareness to the mapping and the archi-
tecture, b) we benchmark the system once, using a single
benchmark for point-to-point communication and sweeping
a range of values for our features, c) we perform feature se-
lection using recursive feature elimination and support vec-
tor regression, if the number of features is high enough to
impede the modeling process, d) we feed the training set,
collected from benchmarking, consisting of the selected fea-
tures with their values and the corresponding measured com-
munication time, to a model using the Gradient Boosted
Regression Trees method, e) we iteratively tune the num-
ber of selected features and/or the parameters of the GBRT
method, until we achieve high scores in the Pred 0.25 and
RCC metrics and a satisfactory range of relative errors.

3.4.4 Feature importance

GBRT do not supply a closed analytical form for commu-
nication time, however, scikit-learn provides a method to
rank the features based on their impact to the output, on a
scale from 0 to 1, allowing us to draw useful observations
about factors that affect communication time. It is impor-
tant to note, though, that this ranking is relative to the spe-
cific method and the training set and is not an accurate mea-
sure for the relevance of the various features to communi-
cation time: important features may have been ranked low
or omitted, while highly-ranked features are usually utilized
for splitting the dataset in higher levels of the decision trees
but would not provide accurate predictions if not combined
with the remaining features. Nevertheless, an overlook of
the selected features (see Figures 5 and 6) can later explain
the predictive ability of each model. For model GBRT-Class
A, Process Data (PD) both on Vilje and Piz Daint, followed
by the allocation size, as defined by n and ppn. For both sys-
tems, the method does not ignore the new features belonging
to classes B and C when given as inputs, proving their corre-
lation to communication time and validating our assumption
that more information, extracted from the process mapping
and the system architecture, can enhance the prediction abil-
ity of the method, as we will also demonstrate in Section
4. As for the highest-ranked features, for Vilje, Node Data
(ND) is the predominant feature for both GBRT-Class B and
GBRT-Class C, scoring higher than 0.7. On Piz Daint, equiv-
alently, Total Data (TD) is the most highly ranked feature
in class B, yet not dominant, as it scores less than 0.25. For
class C, Process Data (PD) is the most highly ranked feature,

Table 6 Tested range of values and selected values for the parameters
of the GBRT method and number of features

Parameter Range Selected Value
Vilje Piz Daint

n estimators 100 - 2000 500 1000
learning rate 0.001 - 1 0.003 0.009
min samples leaf 1 - 5 2 2
min samples split 2 - 8 3 3
max depth 3 - 8 7 5
features classA - 5 5
features classB - 19 19
features classC 15 - 40 24 23

although scoring less than 0.15. Overall, the feature ranking
for GBRT-Class C on Piz Daint demonstrates that decision
trees take into account the traffic through various points of
the network at more levels in all depths of the trees, while on
Vilje, metrics of traffic on the nodes and switches primarily
affect the modeling process. However, on Vilje, the distri-
bution of data to messages is also critical, as indicated by
the importance of metrics for messages, which are pruned
by feature selection on Piz Daint.

3.5 Alternative models

Although the multitude of factors affecting communication
time advise for multiple variable models for communication
time, we also detected features which were very highly cor-
related with communication time. This observation urges
us to construct additional single-variable linear models for
communication time. We worked towards this direction to
test the importance of utilizing multiple features for com-
munication prediction. As single variable models are very
easy to build, we selected the most highly correlated feature
for each system: SD (max) for Vilje and AD (max) for Piz
Daint to build single variable regression models. It is note-
worthy that these features, both belonging to Class C, are
similar on the two systems, as they highlight traffic leav-
ing the switching components (IB switch and Aries SoC).
To identify the relationship between the selected feature and
the target, and decide upon the model form, we constructed
a vector of polynomial and non-linear transformations of the
target feature, X = {1,x,x2,x3, log2x, log2

2x, log3
2x,

√
x},x ∈

{SD(max),AD(max)} and constructed 7806 linear models
of the form t̂ = b0 + ∑3

i=1 bix jxk,x j,xk ∈ X , j ̸= k, trained
with the benchmark data. We then selected the best-fitting
model for each system, denoted as LinReg - SV, standing
for single-variable linear regression. The models and their
coefficients for the two systems are given in Table 3.5.



12 Nikela Papadopoulou et al.

Table 7 Single Variable Linear Regression Models for Vilje and Piz Daint

System Model Form b0 b1 b2 b3

Vilje b0 +b1 × log5
2x+b2 × xlog2

2x+b3 × x
√

x −5.153×10−4 5.518×10−15 5.651×10−11 −1.471×10−16

Piz Daint b0 +b1 ×
√

x+b2 × log3
2x+b3 × xlog3

2x 7.939×10−6 1.183×10−7 −1.278×10−15 5.151×10−15

3.6 Extracting features from HPC applications

The features we define reflect the flows of data that result
from the mapping of the communication graph to the net-
work graph of a specific allocation. Features of different
classes require different pieces of information, which can be
extracted at different times in the execution lifetime of an ap-
plication. Class A features only require information from the
communication pattern, in the form of a time-independent
trace, i.e. tuples of the form (sender, receiver, message size).
This information can be automatically extracted with trac-
ing tools, such as mpiP [53] or TAU [49] and tau2simgrid
[17]. If the source code is available, this information can
be extracted by simple code inspection. As we only need
time-independent traces, i.e. we do not require time stamps
for communication events, the collection of Class A features
can be performed by tracing the application on fewer cores
than the target scale, e.g. on a single or a few nodes. Class
B features require information from the process mapping,
i.e. the placement of processes on nodes, in the form of tu-
ples (rank, node). The mapping is usually known to the user
for an execution of an application, as the common practice
is that the user defines either a default mapping for pro-
cesses, such as block or round-robin placement of processes
on nodes, or defines their own mapping, as a parameter to
the mpirun wrapper script, or as an environment variable
to Torque5 or SLURM6 scripts for job submission on HPC
systems. Class C features require the list of nodes of the
given allocation, which is given by the resource manager,
Torque or SLURM, just before the execution of the applica-
tion. They also require system-specific information from the
underlying topology, which, in the case of InfiniBand net-
works, can be extracted by analyzing the output of ibstat7

and in the case of Cray systems, it can be extracted by an-
alyzing the output of xtnodestat8. In both cases, this output
provides the position of any node on the underlying topol-
ogy and allows the extraction of Class C features. It should
be noted that the Select Plugin of SLURM takes the decision
of node allocation after submission, thus Class C informa-
tion can become available long before the execution of the
application and not “just-in-time”.

5 http://www.adaptivecomputing.com/products/open-source/torque/
6 http://slurm.schedmd.com/
7 https://linux.die.net/man/8/ibstat
8 http://pubs.cray.com/#/Collaborate/00256453-FA

4 Evaluation

4.1 Communication patterns

We experimented with two communication patterns that are
commonly encountered in real-world parallel applications,
i.e. a Halo-3D exchange pattern, drawn from the 7-point-
Jacobi relaxation, and a Halo-4D exchange pattern, drawn
from Lattice QCD simulations. The Halo-3D (Halo-4D) ex-
change pattern is implemented with MPI as follows: pro-
cesses are arranged in a virtual 3D (4D) cartesian grid and
the original 3D (4D) domain is decomposed into smaller 3D
subdomains (4D subdomains). Each process exchanges a 2D
(3D)-face with each of the six (eight) neighboring processes.

We also applied our methodology to the point-to-point
communication phases of LULESH [39], the Livermore Un-
structured Lagrangian Explicit Shock Hydrodynamics proxy
application. LULESH is a stencil-based code in three dimen-
sions and exposes three point-to-point communication pat-
terns in each simulation time step. The first pattern, LULESH-
1, is a 27-point 3D-halo exchange for the communication of
force vectors, the second pattern, LULESH-2, is a 7-point
3D-halo exchange for the communication of artificial vis-
cosity and the third pattern, LULESH-3, is a 27-point 3D-
wavefront for the communication of positions and veloci-
ties.

The selected communication phases expose four diverse,
but very common nearest-neighbor patterns with different
communication characteristics. In Halo-3D and LULESH-
2, communication consists of 6 messages of equal size, i.e.
the six 2D-faces of the 3D-subdomain. This simple pattern,
which frequently appears in applications, is also found in
the LLNL AMG20139 and Kripke10 proxy applications, the
ExMatEx CoMD11 proxy application, CloverLeaf3D, mini-
AMR and miniGhost of the Mantevo12 MiniApp suite, MG
and SP of the NAS13 Parallel Benchmarks and the LBL Ex-
aCT miniGMG14 proxy application. In Halo-4D, commu-
nication is denser, consisting of 8 messages of equal size,
i.e. the eight 3D-faces of the 4D-subdomain. This pattern
is present in all quantum chromodynamic codes, as is tm-

9 https://codesign.llnl.gov/amg2013.php
10 https://codesign.llnl.gov/kripke.php
11 http://www.exmatex.org/comd.html
12 https://mantevo.org/
13 https://www.nas.nasa.gov/publications/npb.html
14 https://ccse.lbl.gov/ExaCT/index.html



Predictive Communication Modeling for HPC Applications 13

Table 8 Details of the testing set

Vilje Piz Daint

Pattern Halo-3D Halo-4D LULESH Halo-3D Halo-4D LULESH
Domain Size 1283, 2563, 5123, 10243, 20483 1284, 2564 2403, 4803 1283, 2563, 5123, 10243, 20483 1284, 2564 2403, 4803

Iterations 256 256 100 256 256 100
n 16-512 16-512 8-225 16-1024 16-1024 8-1000
ppn 1-16 1-16 1-16 1-8 1-8 1-8
#executions 3 2 1 3 2 1
#points 648 613

−100

−50

0

50

100

150

200

250

R
el

at
iv

e 
Er

ro
r (

%
)

α - β Model
α -β - γ Model with α,β penalties
LinReg-SV

GBRT-Class A
GBRT-Class B
GBRT-Class C

Inter-Quartile Range
Median Relative Error
MMRE

0
20
40
60
80

100

PR
ED

0.
25

 (%
)

Halo-3D Halo-4D LULESH-1
(26pt-Halo-3D)

LULESH-2
(6pt-Halo-3D)

LULESH-3
(26pt-Wave-3D)

Aggregate
0.5
0.6
0.7
0.8
0.9
1.0

R
C

C

Fig. 7 Model comparison with relative error distribution, accuracy and goodness-of-fit metrics for Vilje.

LQCD15, MILC16 and PRACE QCD benchmarks17. LULESH-
1 processes exchange 26 messages of three different sizes,
arising from the geometry of the 3D-subdomain: six 2D-
faces, twelve 1D-edges and eight corners of one element.
This pattern appears in numerous HPC applications and can
be found in the LLNL Lassen18 and AMG2013 proxy appli-
cations, the ANL CESAR NekBone19 proxy application, as
well as in HPCCG, miniFE and miniGhost of the Mantevo

15 https://github.com/etmc/tmLQCD
16 http://physics.indiana.edu/ sg/milc.html
17 http://www.prace-ri.eu/ueabs/#QCD
18 https://codesign.llnl.gov/lassen.php
19 https://cesar.mcs.anl.gov/content/software/thermal hydraulics

suite. LULESH-3 exposes a wavefront pattern, in which pro-
cesses exchange messages of three different sizes, namely
faces, edges and corners, but communication takes place di-
agonally, i.e. each process sends only 13 messages to thir-
teen neighbors and receives 13 messages from the remaining
thirteen neighbors.

We predict communication time for Halo-3D, Halo-4D
and LULESH for various problem sizes and execution con-
figurations, as well as for multiple executions, in order to
test the ability of class C features to describe the effects of
distinct allocations. The specifics of the testing set for the
two systems is given in Table 8. LULESH by design expects



14 Nikela Papadopoulou et al.

−100

−50

0

50

100

150

200

250

R
el

at
iv

e 
Er

ro
r (

%
)

α - β Model
α -β - γ Model with α,β penalties
LinReg-SV

GBRT-Class A
GBRT-Class B
GBRT-Class C

Inter-Quartile Range
Median Relative Error
MMRE

0
20
40
60
80

100

PR
ED

0.
25

 (%
)

Halo-3D Halo-4D LULESH-1
(26pt-Halo-3D)

LULESH-2
(6pt-Halo-3D)

LULESH-3
(26pt-Wave-3D)

Aggregate
0.5
0.6
0.7
0.8
0.9
1.0

R
C

C

Fig. 8 Model comparison with relative error distribution, accuracy and goodness-of-fit metrics for Piz Daint.

Table 9 Measured parameters for the analytical and semi-empirical
models on Vilje and Piz Daint

Vilje Piz Daint

α 0.305 us 0.238 us
β 0.215 ns 0.114 ns
γ 0.257 us 0.453 us

the number of processes to be a power of 3, so all execution
configurations for LULESH are bound by this constraint.

4.2 Analytical and semi-empirical models

For comparison purposes, we implemented analytical and
semi-empirical models for communication time, as proposed
by Gahvari et al. [24, 25], for all the evaluated commu-
nication patterns. The baseline analytical approach is the
α −β model, which is the equivalent of Hockney’s latency-
bandwidth model, where α is the latency and β is the in-
verse bandwidth. A third parameter, γ , denotes the per-hop
delay and introduces a distance penalty, resulting in the α-β -
γ model. We measured the three parameters with the HPCC

benchmark20 on Vilje and Piz Daint and show their values in
Table 4.2. The models can be enhanced with three penalties.
A penalty can be added to the β parameter, to reflect the lim-
its of achievable bandwidth and network contention due to
link sharing. A second penalty can be added to the α param-
eter, to capture the effect of multiple processes accessing the
network from the same node (multicore penalty). The same
penalty can be added to the γ parameter, as multiple pro-
cesses can create contention on every hop of a message on
the network. The addition of these penalties result to 5 pos-
sible models. We evaluated all five models and present pre-
diction results for the analytical α-β model and the best of
the five semi-empirical, penalized models on each system,
which is the α-β -γ model with α,β penalties. Note that,
while we do not expect the α-β model to capture the com-
plexities of communication time and give accurate predic-
tion results, it constitutes the simplest expression for com-
munication time, captures the effect of the problem size and
decomposition and thus is a lower bound for prediction ac-
curacy.

20 http://icl.cs.utk.edu/hpcc/



Predictive Communication Modeling for HPC Applications 15

4.3 Model comparison

To evaluate the predictive ability of our models, we utilize
the metrics defined in Section 3.1. Figures 7 and 8 show the
comparison of the six types of models described in Section 3
and Section 4.2. We may draw a number of interesting obser-
vations regarding the modeling methodology. First, adding
empirical knowledge, mapping and architecture awareness
to prediction models significantly improves accuracy. Our
empirical models outperform the semi-empirical penalized
α-β -γ model in all cases. On aggregate, with our GBRT-
Class C we achieve to reduce the MMRE from 44.64% of
the penalized model to 23.98% on Vilje and from 42.6% to
21.31% on Piz Daint. Second, models trained with bench-
mark data are effective in predicting communication time.
This validates our choice to rely on generic, application-
independent benchmarking, which requires data collection
once, at the initialization of the modeling process. Third,
single variable regression models can be accurate enough
when their single feature is capable of capturing core ef-
fects of actual communication. However, they cannot gen-
erally provide high accuracy across platforms and applica-
tions. For example, on Vilje, the selected feature reflects
maximum application traffic through a switch (SD (max)),
which in general does not correspond to the actual traffic
on the switch: switches are often shared among different al-
locations and applications. Finally, the baseline α-β model
fails to predict communication time in all tested patterns, al-
though it manages to capture part of the scaling behavior of
communication, owed to the problem size and decomposi-
tion, as reflected in its RCC scores.

Focusing on Vilje, the LinReg− SV model exhibits the
lowest accuracy among our models, however, looking at its
high RCC score, it is able to distinguish between different
communication configurations. In this system, Class C mod-
els clearly outperform all other approaches. The prediction
results of the penalized α-β -γ model are interesting: while
it generally underpredicts most patterns, it overpredicts LU-
LESH-1 and performs well in LULESH-3. This is a result of
the penalty on β , where the ratio of total number of mes-
sages to number of links is taken into account. The two pat-
terns exhibit high values for the number of messages. On
Piz Daint, the Class C model exhibits the highest aggre-
gate accuracy across the various communication patterns.
Interestingly, model LinReg - SV achieves remarkable ac-
curacy, especially in LULESH and Halo-4D patterns, as the
selected feature, AD (max), that corresponds to the traffic
through an Aries SoC, highly characterizes the traffic pattern
and communication performance. Finally, an observation for
GBRT-Class A is that, while the model scores decently on
Piz Daint, it often overpredicts communication time on Vilje
for all patterns. This behavior proves that Class A features,
in combination with our generic benchmarking, are insuffi-

cient for sketching the traffic pattern and achieving accurate
predictions on Vilje, where communication performance is
highly influenced by effects occurring at the node and switch
level and the distribution of data to different messages is
important, as indicated by the feature ranking for Class B
and Class C models. The accuracy of GBRT-Class A can be
boosted by augmenting the training set with data from ir-
regular patterns, in order to include minimum and average
values for the features l, PD and PM.

4.4 Detailed prediction evaluation

Based on the remarks of the previous paragraph, the best
model across both systems and datasets is GBRT-Class C.
We consider this model to be the most useful, as a) it is
applicable just-in-time before the execution of the applica-
tion (whereas Class A and Class B models which have bet-
ter applicability are not equally successful for all commu-
nication patterns), b) its accuracy is on aggregate very high
across both systems, scoring 61.43% in Pred0.25 on Vilje
and 66.57% on Piz Daint and c) its goodness-of-fit is ex-
cellent, as its RCC score is 0.942 on Vilje and 0.940 on Piz
Daint. For this reason, we further analyze the accuracy of
this model. Fig. 9 presents a comparison of the measured
and predicted values with GBRT-Class C, for all points in the
testing set, normalized to one iteration, in the form of scat-
terplots, broken down by communication time for the sake
of visibility. On Vilje (see 9(a)), the majority of predictions
(61.43%) lie within the ±25% error line, while 87.6% of
predictions lie within the ±50% error line. A set of 60 points
with communication time lower than 0.0015 seconds lie be-
low the -50% error line. These points correspond to config-
urations with short message lengths and high core counts,
where communication time measurements are noisy and ex-
hibit high time variability, hence our model tends to under-
predict for these configurations. The scatterplots for Piz Daint
in Fig. 9(b) indicate that there are no systematic under- or
over-predictions on this system. The model is well-crafted
for any communication configuration and 92.14% of predic-
tions lie within the ±50% error line, with very few outliers
present when measured communication time is lower than
100 microseconds.

For the Halo-3D and Halo-4D patterns, our testing set
includes a multitude of configurations, problem sizes and
distinct executions on different allocations. To test the abil-
ity of our model to predict communication time scalability
when the number of nodes or processes per node is scaled,
we utilized the average of Pred0.25 and RCC to score the
various subsets of measurements. We present the best, me-
dian and worst predicted subsets in Fig. 10. On Vilje (see
Fig. 10(a)), predictions are excellent in the best and me-
dian case, both when scaling nodes and when scaling pro-
cesses per node. This observation proves the ability of our



16 Nikela Papadopoulou et al.

0.0000 0.0005 0.0010 0.0015 0.0020
Communication Time - MEASURED (s)

0.0000

0.0005

0.0010

0.0015

0.0020

C
om

m
un

ic
at

io
n 

Ti
m

e 
- P

R
ED

IC
TE

D
 (s

)

0.00 0.01 0.02 0.03 0.04 0.05
Communication Time - MEASURED (s)

0.00

0.01

0.02

0.03

0.04

0.05

C
om

m
un

ic
at

io
n 

Ti
m

e 
- P

R
ED

IC
TE

D
 (s

)

GBRT-Class C +/-25% ERROR +/-50% ERROR

(a) Vilje

0.0000 0.0005 0.0010 0.0015 0.0020
Communication Time - MEASURED (s)

0.0000

0.0005

0.0010

0.0015

0.0020

C
om

m
un

ic
at

io
n 

Ti
m

e 
- P

R
ED

IC
TE

D
 (s

)

0.00 0.01 0.02 0.03 0.04 0.05
Communication Time - MEASURED (s)

0.00

0.01

0.02

0.03

0.04

0.05

C
om

m
un

ic
at

io
n 

Ti
m

e 
- P

R
ED

IC
TE

D
 (s

)

GBRT-Class C +/-25% ERROR +/-50% ERROR

(b) Piz Daint

Fig. 9 Scatterplots for predictions with GBRT-Class C. Communication time is normalized to a single iteration.

0 100 200 300 400 500
Nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
om

m
un
ic
at
io
n 
Ti
m
e 
(s
)

Be
st
 C
as
e

Scaling Nodes
Halo-3D | 20483 | PPN=16

0 100 200 300 400 500
Nodes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
om

m
un
ic
at
io
n 
Ti
m
e 
(s
)

M
ed

ia
n 
C
as
e

Halo-3D | 10243 | PPN=2

0 100 200 300 400 500
Nodes

0.00

0.01

0.02

0.03

0.04

0.05

C
om

m
un
ic
at
io
n 
Ti
m
e 
(s
)

W
or
st
 C
as
e

Halo-3D | 1283 | PPN=16

0 2 4 6 8 10 12 14 16
Processes Per Node

0.0

0.2

0.4

0.6

0.8

1.0

C
om

m
un
ic
at
io
n 
Ti
m
e 
(s
)

Scaling PPN
Halo-4D | 1284 | Nodes=64

0 2 4 6 8 10 12 14 16
Processes Per Node

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

C
om

m
un
ic
at
io
n 
Ti
m
e 
(s
)

Halo-3D | 2563 | Nodes=64

0 2 4 6 8 10 12 14 16
Processes Per Node

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
om

m
un
ic
at
io
n 
Ti
m
e 
(s
)

Halo-4D | 2564 | Nodes=512

GBRT-Class CMEASURED

(a) Vilje

0 200 400 600 800 1000
Nodes

0

2

4

6

8

10

C
om

m
un
ic
at
io
n 
Ti
m
e 
(s
)

Be
st
 C
as
e

Scaling Nodes
Halo-4D | 2564 | PPN=8

0 200 400 600 800 1000
Nodes

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

C
om

m
un
ic
at
io
n 
Ti
m
e 
(s
)

M
ed

ia
n 
C
as
e

Halo-3D | 5123 | PPN=2

0 200 400 600 800 1000
Nodes

0.000

0.005

0.010

0.015

0.020

C
om

m
un
ic
at
io
n 
Ti
m
e 
(s
)

W
or
st
 C
as
e

Halo-3D | 1283 | PPN=1

0 1 2 3 4 5 6 7 8
Processes Per Node

0

2

4

6

8

10

C
om

m
un
ic
at
io
n 
Ti
m
e 
(s
)

Scaling PPN
Halo-4D | 2564 | Nodes=32

0 1 2 3 4 5 6 7 8
Processes Per Node

0.000

0.002

0.004

0.006

0.008

0.010

C
om

m
un
ic
at
io
n 
Ti
m
e 
(s
)

Halo-3D | 1283 | Nodes=128

0 1 2 3 4 5 6 7 8
Processes Per Node

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

C
om

m
un
ic
at
io
n 
Ti
m
e 
(s
)

Halo-3D | 1283 | Nodes=1024

GBRT-Class CMEASURED

(b) Piz Daint

Fig. 10 Predictions for Halo-3D and Halo-4D with GBRT-Class C. Best, median and worst cases are selected using the best, median and worst
value of Pred0.25 ∗RCC.

model to achieve high prediction accuracy in most cases.
The worst case presented, when nodes are scaled, corre-
sponds to a small problem size with short messages, where
noisy measurements and outliers are common and accurate
predictions cannot easily be obtained, resulting in higher
prediction errors. However, when processes per node are

scaled, even in the worst case, communication scalability
is well predicted. On Piz Daint (see Fig. 10(b)), we observe
that our model achieves high quality predictions in the best
and median case. Communication scalability is not accu-
rately captured only in the worst case, where the problem
size is also small with short messages.



Predictive Communication Modeling for HPC Applications 17

0.00
0.05
0.10
0.15 240

3 LU
LESH

-1
(26pt-H

alo-3D
)

GBRT-Class CMEASURED

0.00
0.05
0.10
0.15
0.20
0.25

480
3

0.00
0.05
0.10
0.15 240

3 LU
LESH

-2
(6pt-H

alo-3D
)

0.00
0.05
0.10
0.15
0.20
0.25

C
om

m
un

ic
at
io
n 
Ti
m
e 
(s
)

480
3

0.00
0.05
0.10
0.15 240

3 LU
LESH

-3
(26pt-W

ave-3D
)

8 x
 1

9 x
 3

27
 x 
1
8 x
 8

16
 x 
4
32
 x 
2
64
 x 
1
25
 x 
5

12
5 x
 1

18
 x 
12
24
 x 
9
27
 x 
8
36
 x 
6
54
 x 
4
72
 x 
3

10
8 x
 2

21
6 x
 1

32
 x 
16
64
 x 
8

12
8 x
 4

12
5 x
 8

10
8 x
 16

14
4 x
 12

19
2 x
 9

21
6 x
 8

22
5 x
 15

Nodes x PPN

0.00
0.05
0.10
0.15
0.20
0.25

480
3

(a) Vilje.

0.00
0.05
0.10
0.15 240

3 LU
LESH

-1
(26pt-H

alo-3D
)

GBRT-Class CMEASURED

0.00
0.05
0.10
0.15
0.20
0.25

480
3

0.00
0.05
0.10
0.15 240

3 LU
LESH

-2
(6pt-H

alo-3D
)

0.00
0.05
0.10
0.15
0.20
0.25

C
om

m
un

ic
at
io
n 
Ti
m
e 
(s
)

480
3

0.00
0.05
0.10
0.15 240

3 LU
LESH

-3
(26pt-W

ave-3D
)

4 x
 2

8 x
 1

9 x
 3
27
 x 
1
8 x
 8
16
 x 
4
32
 x 
2
64
 x 
1
25
 x 
5

12
5 x
 1
36
 x 
6
54
 x 
4
72
 x 
3

10
8 x
 2

21
6 x
 1
64
 x 
8

12
8 x
 4

25
6 x
 2

51
2 x
 1

12
5 x
 8

25
0 x
 4

50
0 x
 2

10
00
 x 
1

21
6 x
 8

28
8 x
 6

43
2 x
 4

57
6 x
 3

86
4 x
 2

Nodes x PPN

0.00
0.05
0.10
0.15
0.20
0.25

480
3

(b) Piz Daint.

Fig. 11 Predictions for LULESH with GBRT-Class C.



18 Nikela Papadopoulou et al.

In Fig. 11, we present the predicted communication time
for all executed configurations of LULESH, sorted by the
number of cores. For all three patterns and two problem
sizes in LULESH on Vilje (see Fig. 11(a)), communication
time is predicted with high accuracy up to 216 cores (216 x 1).
Configurations up to 512 cores (128 x 4) are also well dis-
tinguished by our model. In the case of LULESH-3, we ob-
serve under-predicted communication times for more than
512 cores. We should note that LULESH-3 has similar com-
munication volume with LULESH-1, sourcing from a dif-
ferent communication pattern: processes in LULESH-3 ex-
change roughly half the number of messages compared to
LULESH-1, with double length; yet communication time rises
in LULESH-3 for more than 512 cores. This behavior is in-
consistent with observations in our training set, which ex-
plains the shortcoming of the model. On Piz Daint (see Fig.
11(b)), accurate predictions are accomplished for the major-
ity of configurations, with the exception of four configura-
tions (54 x 4, 216 x 1, 125 x 8, 216 x 8) where communica-
tion time is underpredicted in all three patterns for the small
problem size (2403) and two configurations (8 x 1, 864 x 2)
where communication time is underpredicted for the large
problem size (4803), though these configurations are dissim-
ilar and mispredictions may be due to noise or interference
with other applications at the time of execution.

5 Related work

Analytical performance modeling of the communication time
of parallel applications has been a hot topic in the past two
decades. Hockney’s model [29] for point-to-point commu-
nication was a meaningful approach to express communica-
tion time for a pair of processors as a function of network-
related parameters, namely startup time and maximal band-
width. Culler et al. [15] attempted an elaborate specifica-
tion of end-to-end communication time based upon network
properties and the message or packet length, giving birth to
the Log(G)P model family. LogGP [2] and LogGPS [35] ex-
tend LogP with parameters for different message sizes and
have been state-of-art in communication performance mod-
eling, however they come with several weaknesses and re-
strictions. Their major weakness is their focus on a local in-
stance of the network, disregarding global network effects,
such as overlapping, multiple hops, contention or conges-
tion, which are addressed separately in LogGP extensions
(LoGPC [42], LoPC [22], LoGPG [43]). As novel network
architectures with offload-enabled network interfaces have
emerged, models of the LogGP family are no longer appli-
cable [18]; new parameters need to be introduced to capture
operations on the network interfaces. In addition, building a
model for a real-life application under Log(G)P parameters
is not straightforward and several works, [44, 4] deploy the

LogGP model to build communication performance mod-
els for large-scale applications on specific machines. More
recent works [5, 56] attempt to encapsulate network con-
tention in novel network models, limiting to specific inter-
connection network architectures, still restraining, though,
to the modeling of network characteristics and communi-
cation primitives, as do the models of the Log(G)P family.
Overall, analytical models trade accuracy for low awareness
and high applicability through simplicity [32]. Considering
their purpose, analytical models are meaningful for hard-
ware/software co-design and communication software de-
sign.

The alternative to analytical modeling is empirical mod-
eling, i.e. the utilization of measurements on the target sys-
tem for the modeling and prediction of application perfor-
mance, through benchmarking or information collection at
runtime. Empirical models, contrary to analytical ones, can
achieve high accuracy by incorporating high levels of aware-
ness, sacrificing part of their applicability. Related work on
empirical modeling includes the work of Jain et al. [37] and
Bhatele et al. [9], where performance models for commu-
nication are built for Blue Gene/Q deploying the network’s
performance counters. These models are highly accurate, as
performance counter measurements allow for full awareness
of the traffic pattern and runtime conditions on the given al-
location, yet their applicability is limited: the values of the
features can only be observed after the execution of an ap-
plication, not allowing for communication time prediction
ahead of execution. In addition, their methodology is strictly
limited to systems as the BlueGene/Q, where network com-
ponents in use are dedicated to the allocation for the ap-
plication execution and performance counter measurements
correspond only to traffic generated from the application in
study. A semi-empirical approach is taken by Gahvari et al.
[24, 25], where the latency-bandwidth model is extended
with empirical parameters for the modeling of the Alge-
braic Multigrid. This approach enhances the accuracy of the
latency-bandwidth model by adding awareness of the pro-
cess mapping, network architecture and topology, and is ap-
plicable at runtime prior to the execution, for many applica-
tions that expose point-to-point communication patterns, as
the Fast Multipole Method [34]. Empirical models increase
prediction accuracy and are meaningful for enhancing deci-
sions taken at runtime, e.g. scheduling decisions and appli-
cation tuning at runtime. Their drawback is that they require
measurements on the target system.

Our work proposes a methodology for empirical predic-
tive modeling of communication time, portable to any plat-
form, by defining meaningful features for communication
performance, available just-in-time ahead of execution. We
utilize benchmarking to train machine-learning prediction
models for the communication time of parallel applications
on the target system.



Predictive Communication Modeling for HPC Applications 19

6 Conclusions and future work

In this work, we presented a methodology to construct pre-
dictive models for the communication time of HPC applica-
tions. Following an empirical approach to predictive mod-
eling, we defined features for communication performance
on two systems, Vilje and Piz Daint, collected a set of mea-
surements with benchmarking and constructed four predic-
tive models for communication time, with different machine
- learning methods and features. We evaluated the predictive
ability of our models on halo-exchange communication pat-
terns and LULESH, and conclude that multiple well-defined
features, generic benchmarking and automated machine -
learning methods, as gradient-boosted regression trees, of-
fer a predictive model for point-to-point communication pat-
terns with high accuracy and good applicability across all
tested communication patterns and execution configurations.
To the best of our knowledge, this is the first work that
presents a cross-application, cross-platform methodology for
communication time prediction of HPC applications ahead
of execution, able to deliver high accuracy and goodness-
of-fit, as indicated by our MMRE, RCC and Pred0.25 scores,
which reach 23.98%, 0.942 and 61.43% on Vilje and 21.31%,
0.940 and 66.56% on Piz Daint.

In future work, we intend to extend our methodology to
target irregular communication patterns and collective com-
munication. To capture irregular communication patterns,
where processes exchange different number of messages of
different sizes (as in iterative solvers involving sparse matrix
computations), we need to extend our benchmarking step
with irregular communication and take into account min-
imum, average and maximum values for Class A features
(i.e. the message length l, the process data PD and process
messages PM). Collective communication modeling shares
many of the challenges with point-to-point communication
modeling, however the communication pattern is predeter-
mined. As such, we anticipate that some regular collective
patterns can be well-modeled with a single or a few fea-
tures, e.g. the number of processes, as indicated by the work
of Shudler et al. [50], while other collective patterns can be
modeled as point-to-point communication, since MPI imple-
mentations also internally use point-to-point communication
for several irregular and many-to-many collectives. Finally,
we aim to enhance our methodology with additional bench-
marking data, collected under the presence of computation
/ communication overlapping, in order to capture communi-
cation behavior in this case as well.

Acknowledgements This research was supported in part with com-
putational resources at the Norwegian Institute of Science and Tech-
nology (NTNU) provided by NOTUR and in part by a grant of com-
putational resources from the Swiss National Supercomputing Center
(CSCS) under project ID g83. Nikela Papadopoulou has received fund-
ing from IKY fellowships of excellence for postgraduate studies in

Greece - SIEMENS program. The authors would also like to thank
Sotirios Apostolakis for his contribution to the early steps of this work.

References

1. Alawneh L, Hamou-Lhadj A, Hassine J (2016) Seg-
menting large traces of inter-process communication
with a focus on high performance computing systems.
Journal of Systems and Software 120:1–16

2. Alexandrov A, Ionescu MF, Schauser KE, Scheiman C
(1995) LogGP: incorporating long messages into the
LogP model—one step closer towards a realistic model
for parallel computation. In: Proceedings of the seventh
annual ACM symposium on Parallel algorithms and ar-
chitectures, ACM, pp 95–105

3. Alverson B, Froese E, Kaplan L, Roweth D (2012) Cray
xc series network. Cray Inc, White Paper WP-Aries01-
1112

4. Bauer G, Gottlieb S, Hoefler T (2012) Performance
modeling and comparative analysis of the MILC lattice
QCD application su3 rmd. In: Cluster, Cloud and Grid
Computing (CCGrid), 2012 12th IEEE/ACM Interna-
tional Symposium on, IEEE, pp 652–659

5. Bédaride P, Degomme A, Genaud S, Legrand A, Marko-
manolis G, Quinson M, Stillwell ML, Suter F, Videau
B, et al (2013) Toward better simulation of MPI applica-
tions on Ethernet/TCP networks. In: PMBS13-4th Inter-
national Workshop on Performance Modeling, Bench-
marking and Simulation of High Performance Com-
puter Systems

6. Bekas C, Curioni A (2010) A new energy aware perfor-
mance metric. Computer Science-Research and Devel-
opment 25(3-4):187–195

7. Bhatelé A, Kalé LV (2009) Quantifying network con-
tention on large parallel machines. Parallel Processing
Letters 19(04):553–572

8. Bhatele A, Mohror K, Langer SH, Isaacs KE (2013)
There goes the neighborhood: performance degradation
due to nearby jobs. In: Proceedings of SC13: Interna-
tional Conference for High Performance Computing,
Networking, Storage and Analysis, ACM, p 41

9. Bhatele A, Titus AR, Thiagarajan JJ, Jain N, Gam-
blin T, Bremer PT, Schulz M, Kale LV (2015) Identify-
ing the culprits behind network congestion. In: Parallel
and Distributed Processing Symposium (IPDPS), 2015
IEEE International, IEEE, pp 113–122

10. Böhme D, Geimer M, Arnold L, Voigtlaender F, Wolf
F (2016) Identifying the root causes of wait states in
large-scale parallel applications. ACM Transactions on
Parallel Computing (TOPC) 3(2):11

11. Casanova H, Desprez F, Markomanolis GS, Suter
F (2015) Simulation of mpi applications with time-



20 Nikela Papadopoulou et al.

independent traces. Concurrency and Computation:
Practice and Experience 27(5):1145–1168

12. Chandrashekar G, Sahin F (2014) A survey on feature
selection methods. Computers & Electrical Engineering
40(1):16–28

13. Chen W, Zhai J, Zhang J, Zheng W (2009) LogGPO: An
accurate communication model for performance predic-
tion of MPI programs. Science in China Series F: Infor-
mation Sciences 52(10):1785–1791

14. Conte SD, Dunsmore HE, Shen VY (1986) Software
engineering metrics and models. Benjamin-Cummings
Publishing Co., Inc.

15. Culler D, Karp R, Patterson D, Sahay A, Schauser
KE, Santos E, Subramonian R, Von Eicken T (1993)
LogP: Towards a realistic model of parallel computa-
tion, vol 28. ACM

16. Demmel J, Hoemmen M, Mohiyuddin M, Yelick K
(2008) Avoiding communication in sparse matrix com-
putations. In: Parallel and Distributed Processing, 2008.
IPDPS 2008. IEEE International Symposium on, IEEE,
pp 1–12

17. Desprez F, Markomanolis GS, Quinson M, Suter F
(2011) Assessing the performance of mpi applications
through time-independent trace replay. In: 2011 40th
International Conference on Parallel Processing Work-
shops, IEEE, pp 467–476

18. Di Girolamo S, Jolivet P, Underwood KD, Hoefler
T (2015) Exploiting offload enabled network inter-
faces. In: High-Performance Interconnects (HOTI),
2015 IEEE 23rd Annual Symposium on, IEEE, pp 26–
33

19. Drosinos N, Koziris N (2004) Performance comparison
of pure mpi vs hybrid mpi-openmp parallelization mod-
els on smp clusters. In: Parallel and Distributed Process-
ing Symposium, 2004. Proceedings. 18th International,
IEEE, p 15

20. Ferreira KB, Bridges PG, Brightwell R, Pedretti
KT (2013) The impact of system design parame-
ters on application noise sensitivity. Cluster computing
16(1):117–129

21. Filgueira R, Singh DE, Carretero J, Calderón A, Garcı́a
F (2011) Adaptive-CoMPI: Enhancing MPI-based ap-
plications’ performance and scalability by using adap-
tive compression. International Journal of High Perfor-
mance Computing Applications 25(1):93–114

22. Frank MI, Agarwal A, Vernon MK (1997) LoPC: mod-
eling contention in parallel algorithms, vol 32. ACM

23. Friedman J, Hastie T, Tibshirani R (2009) The elements
of statistical learning: Data mining, inference, and pre-
diction. Springer Series in Statistics

24. Gahvari H, Baker AH, Schulz M, Yang UM, Jordan KE,
Gropp W (2011) Modeling the performance of an al-
gebraic multigrid cycle on hpc platforms. In: Proceed-

ings of the international conference on Supercomput-
ing, ACM, pp 172–181

25. Gahvari H, Gropp W, Jordan KE, Schulz M, Yang
UM (2014) Algebraic multigrid on a dragonfly net-
work: First experiences on a cray xc30. In: International
Workshop on Performance Modeling, Benchmarking
and Simulation of High Performance Computer Sys-
tems, Springer, pp 3–23

26. Goumas G, Sotiropoulos A, Koziris N (2001) Minimiz-
ing completion time for loop tiling with computation
and communication overlapping. In: Parallel and Dis-
tributed Processing Symposium., Proceedings 15th In-
ternational, IEEE, pp 10–pp

27. Goumas G, Drosinos N, Koziris N (2009)
Communication-aware supernode shape. Parallel
and Distributed Systems, IEEE Transactions on
20(4):498–511

28. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene
selection for cancer classification using support vector
machines. Machine learning 46(1-3):389–422

29. Hockney RW (1994) The communication challenge for
MPP: Intel Paragon and Meiko CS-2. Parallel comput-
ing 20(3):389–398

30. Hoefler T, Schneider T, Lumsdaine A (2010) Charac-
terizing the influence of system noise on large-scale ap-
plications by simulation. In: Proceedings of the 2010
ACM/IEEE International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis,
IEEE Computer Society, pp 1–11

31. Hoefler T, Schneider T, Lumsdaine A (2010) LogGOP-
Sim: simulating large-scale applications in the Log-
GOPS model. In: Proceedings of the 19th ACM Inter-
national Symposium on High Performance Distributed
Computing, ACM, pp 597–604

32. Hoefler T, Gropp W, Kramer W, Snir M (2011) Perfor-
mance modeling for systematic performance tuning. In:
State of the Practice Reports, ACM, p 6

33. Hunold S, Carpen-Amarie A (2015) On the impact of
synchronizing clocks and processes on benchmarking
MPI collectives. In: EuroMPI, ACM, pp 8:1–8:10

34. Ibeid H, Yokota R, Keyes D (2016) A performance
model for the communication in fast multipole meth-
ods on high-performance computing platforms. Interna-
tional Journal of High Performance Computing Appli-
cations p 1094342016634819

35. Ino F, Fujimoto N, Hagihara K (2001) LogGPS: a par-
allel computational model for synchronization analysis.
In: ACM SIGPLAN Notices, ACM, vol 36, pp 133–142

36. Isaacs K, Gamblin T, Bhatele A, Schulz M, Hamann B,
Bremer P (2014) Ordering traces logically to identify
lateness in parallel programs. Tech. rep., Technical Re-
port LLNL-TR-656141, Lawrence Livermore National
Laboratory



Predictive Communication Modeling for HPC Applications 21

37. Jain N, Bhatele A, Robson MP, Gamblin T, Kale LV
(2013) Predicting application performance using super-
vised learning on communication features. In: Proceed-
ings of SC13: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis,
ACM, p 95

38. Jokanovic A, Sancho JC, Rodrı́guez G, Lucero A,
Minkenberg C, Labarta J (2015) Quiet neighborhoods:
Key to protect job performance predictability. 29th
IEEE International Parallel & Distributed Processing
Symposium (IPDPS-2015)

39. Karlin I, Bhatele A, Chamberlain BL, Cohen J, Devito
Z, Gokhale M, Haque R, Hornung R, Keasler J, Laney
D, Luke E, Lloyd S, McGraw J, Neely R, Richards D,
Schulz M, Still CH, Wang F, Wong D (2012) Lulesh
programming model and performance ports overview.
Tech. Rep. LLNL-TR-608824

40. Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn
I, Leiser N, Czajkowski G (2010) Pregel: a system
for large-scale graph processing. In: Proceedings of
the 2010 ACM SIGMOD International Conference on
Management of data, ACM, pp 135–146

41. Mendes-Moreira J, Soares C, Jorge AM, Sousa JFD
(2012) Ensemble approaches for regression: A survey.
ACM Computing Surveys (CSUR) 45(1):10

42. Moritz CA, Frank MI (1998) LoGPC: Modeling
network contention in message-passing programs.
ACM SIGMETRICS Performance Evaluation Review
26(1):254–263

43. Moritz CA, Frank MI (2001) LoGPG: Modeling net-
work contention in message-passing programs. Par-
allel and Distributed Systems, IEEE Transactions on
12(4):404–415

44. Mudalige GR, Vernon MK, Jarvis SA (2008) A plug-
and-play model for evaluating wavefront computations
on parallel architectures. In: Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE International
Symposium on, IEEE, pp 1–14

45. Papadopoulou N, Goumas GI, Koziris N (2015) A
machine-learning approach for communication predic-
tion of large-scale applications. In: 2015 IEEE Inter-
national Conference on Cluster Computing, CLUSTER
2015, Chicago, IL, USA, September 8-11, 2015, pp
120–123

46. Pedregosa F, Varoquaux G, Gramfort A, Michel V,
Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss
R, Dubourg V, Vanderplas J, Passos A, Cournapeau D,
Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn:
Machine learning in Python. Journal of Machine Learn-
ing Research 12:2825–2830

47. Rabenseifner R, Hager G, Jost G (2009) Hybrid
MPI/OpenMP parallel programming on clusters of
multi-core SMP nodes. In: Parallel, Distributed and

Network-based Processing, 2009 17th Euromicro Inter-
national Conference on, IEEE, pp 427–436

48. Sancho JC, Barker KJ, Kerbyson DJ, Davis K (2006)
Quantifying the potential benefit of overlapping com-
munication and computation in large-scale scientific ap-
plications. In: SC 2006 Conference, Proceedings of the
ACM/IEEE, IEEE, pp 17–17

49. Shende SS, Malony AD (2006) The tau parallel per-
formance system. International Journal of High Perfor-
mance Computing Applications 20(2):287–311

50. Shudler S, Calotoiu A, Hoefler T, Strube A, Wolf F
(2015) Exascaling your library: Will your implementa-
tion meet your expectations? In: Proceedings of the 29th
ACM on International Conference on Supercomputing,
ACM, pp 165–175

51. Tallent NR, Adhianto L, Mellor-Crummey JM (2010)
Scalable identification of load imbalance in parallel
executions using call path profiles. In: Proceedings
of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage
and Analysis, IEEE Computer Society, pp 1–11

52. Valiant LG (1990) A bridging model for parallel com-
putation. Communications of the ACM 33(8):103–111

53. Vetter J, Chambreau C (2005) mpip: Lightweight, scal-
able mpi profiling

54. Yu L, Li D, Mittal S, Vetter JS (2014) Quantitatively
modeling application resilience with the data vulner-
ability factor. In: High Performance Computing, Net-
working, Storage and Analysis, SC14: International
Conference for, IEEE, pp 695–706

55. Zhang C, Ma Y (2012) Ensemble machine learning.
Springer

56. Zhu J, Lastovetsky A, Ali S, Riesen R, Hasanov
K (2015) Asymmetric communication models for
resource-constrained hierarchical ethernet networks.
Concurrency and Computation: Practice and Experi-
ence 27(6):1575–1590


