
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/318409171

A Performance Study of UCX over InfiniBand

Conference Paper · May 2017

DOI: 10.1109/CCGRID.2017.149

CITATIONS

12
READS

1,208

3 authors, including:

Nikela Papadopoulou

Chalmers University of Technology

34 PUBLICATIONS   110 CITATIONS   

SEE PROFILE

Lena Oden

Argonne National Laboratory

18 PUBLICATIONS   174 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Nikela Papadopoulou on 06 December 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/318409171_A_Performance_Study_of_UCX_over_InfiniBand?enrichId=rgreq-4a6b6acf80602856416e15e504ebf3dd-XXX&enrichSource=Y292ZXJQYWdlOzMxODQwOTE3MTtBUzo4MzMxMTA3NDQ3NzY3MDhAMTU3NTY0MDQ4ODU5Mw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/318409171_A_Performance_Study_of_UCX_over_InfiniBand?enrichId=rgreq-4a6b6acf80602856416e15e504ebf3dd-XXX&enrichSource=Y292ZXJQYWdlOzMxODQwOTE3MTtBUzo4MzMxMTA3NDQ3NzY3MDhAMTU3NTY0MDQ4ODU5Mw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-4a6b6acf80602856416e15e504ebf3dd-XXX&enrichSource=Y292ZXJQYWdlOzMxODQwOTE3MTtBUzo4MzMxMTA3NDQ3NzY3MDhAMTU3NTY0MDQ4ODU5Mw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nikela-Papadopoulou?enrichId=rgreq-4a6b6acf80602856416e15e504ebf3dd-XXX&enrichSource=Y292ZXJQYWdlOzMxODQwOTE3MTtBUzo4MzMxMTA3NDQ3NzY3MDhAMTU3NTY0MDQ4ODU5Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nikela-Papadopoulou?enrichId=rgreq-4a6b6acf80602856416e15e504ebf3dd-XXX&enrichSource=Y292ZXJQYWdlOzMxODQwOTE3MTtBUzo4MzMxMTA3NDQ3NzY3MDhAMTU3NTY0MDQ4ODU5Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Chalmers-University-of-Technology?enrichId=rgreq-4a6b6acf80602856416e15e504ebf3dd-XXX&enrichSource=Y292ZXJQYWdlOzMxODQwOTE3MTtBUzo4MzMxMTA3NDQ3NzY3MDhAMTU3NTY0MDQ4ODU5Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nikela-Papadopoulou?enrichId=rgreq-4a6b6acf80602856416e15e504ebf3dd-XXX&enrichSource=Y292ZXJQYWdlOzMxODQwOTE3MTtBUzo4MzMxMTA3NDQ3NzY3MDhAMTU3NTY0MDQ4ODU5Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lena-Oden?enrichId=rgreq-4a6b6acf80602856416e15e504ebf3dd-XXX&enrichSource=Y292ZXJQYWdlOzMxODQwOTE3MTtBUzo4MzMxMTA3NDQ3NzY3MDhAMTU3NTY0MDQ4ODU5Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lena-Oden?enrichId=rgreq-4a6b6acf80602856416e15e504ebf3dd-XXX&enrichSource=Y292ZXJQYWdlOzMxODQwOTE3MTtBUzo4MzMxMTA3NDQ3NzY3MDhAMTU3NTY0MDQ4ODU5Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Argonne_National_Laboratory?enrichId=rgreq-4a6b6acf80602856416e15e504ebf3dd-XXX&enrichSource=Y292ZXJQYWdlOzMxODQwOTE3MTtBUzo4MzMxMTA3NDQ3NzY3MDhAMTU3NTY0MDQ4ODU5Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lena-Oden?enrichId=rgreq-4a6b6acf80602856416e15e504ebf3dd-XXX&enrichSource=Y292ZXJQYWdlOzMxODQwOTE3MTtBUzo4MzMxMTA3NDQ3NzY3MDhAMTU3NTY0MDQ4ODU5Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nikela-Papadopoulou?enrichId=rgreq-4a6b6acf80602856416e15e504ebf3dd-XXX&enrichSource=Y292ZXJQYWdlOzMxODQwOTE3MTtBUzo4MzMxMTA3NDQ3NzY3MDhAMTU3NTY0MDQ4ODU5Mw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


A Performance Study of UCX over InfiniBand
Nikela Papadopoulou

National Technical University of Athens
Athens, 15780, Greece

E-mail: nikela@cslab.ece.ntua.gr

Lena Oden
Argonne National Laboratory
Argonne, IL, 60439, USA
E-mail: loden@mcs.anl.gov

Pavan Balaji
Argonne National Laboratory
Argonne, IL, 60439, USA

E-mail: balaji@anl.gov

Abstract—UCX is an open-source communication framework
with a two-level API design targeted at addressing the needs of
large supercomputing systems. The lower-level interface, UCT,
adds minimal overhead to data transfer but requires considerable
effort from the user. The higher-level interface, UCP, is easier to
use, but adds some overhead to the communication. This work
focuses on charting the performance of UCX over InfiniBand,
motivated by the usage of UCX as middleware for high-level
communication libraries. We analyze performance shortcomings
that stem from the two-level design and the sources of these
performance losses. In particular, we target basic functions of
UCP, evaluate their performance over InfiniBand, and analyze
sources of overheads compared with UCT and Verbs. We propose
and evaluate some fixes to minimize these overheads, in order to
enhance UCP performance and scalability.

Index Terms—communication software, communication mid-
dleware, UCX, InfiniBand, performance.

I. INTRODUCTION

Modern HPC systems include extreme numbers of
lightweight cores, deploying extremely low-latency intercon-
nection networks. In order to exploit the capabilities of these
upcoming architectures and to meet their demands in scal-
ability, communication software needs to scale on millions
of cores and support applications with adequate function-
ality to express their parallelism. Moreover, communication
software should add as little overhead as possible in or-
der to avoid compromising the native performance of the
interconnection network. These requirements make the de-
sign of high-performance communication software extremely
intricate, since they demand minimal memory requirements
and low instruction counts and cache activity while meeting
stringent performance targets.

High-level programming models for communication (e.g.,
MPI, UPC, SHMEM) can be built on top of middleware, such
as Portals [1], GASNet [2], UCCS [3], and ARMCI [4] or
use lower-level network-specific interfaces, often provided by
the vendor. While the former offer high-level communication
abstractions and portability across different systems, the latter
offer proximity to the hardware and minimize overheads
related to multiple software layers. An effort to combine the
advantages of both is UCX [5], a communication framework
for high-performance computing systems, which comes with
a two-level API design.

The lower-level API, UCT, provides a unified API that
abstracts communication functions for various low-level net-
works. At the upper level, UCX implements UCP, an API

that exposes a collection of high-level protocols, such as tag
matching, RMA, and atomic operations, and simplifies the
initialization of communication. The two-level design of UCX
offers portability across network fabrics. A third component,
UCS, provides the necessary services for memory manage-
ment, data structures, and more. Currently, UCX supports
InfiniBand Verbs [6], Cray uGNI [7], and shared-memory
devices (e.g., POSIX, KNEM).

MPICH [8], developed at Argonne National Laboratory and
the most widely used MPI implementation, supports UCX in
the MPICH 3.3 release series.1 MPICH uses the UCP API
because of its close match to MPI functionality; for exam-
ple, Isend/Irecv operations are directly implemented by using
UCP tag-matching functions. Apart from MPICH, other MPI
implementations such as Open MPI, and an implementation
of OpenSHMEM [9] have also utilized UCP as one of the
communication APIs that they support. While UCT itself is
less utilized directly by higher-level programming models, it is
more performant than UCP. An implementation of UCT exists
for InfiniBand through libibverbs, the OFED Verbs library
that exposes the InfiniBand Verbs API. Additionally, UCT
is also implemented with an accelerated version of Verbs,
customized for the Mellanox MLX5 InfiniBand driver. Early
results for UCT over InfiniBand [5] show that the accelerated
version achieves high performance for remote direct memory
access (RDMA) operations. UCP’s broader abstractions and
support for multiple transport layers add to programming ease
and reduce the complexity of the code of the programming
model implementations, making it a good target for higher-
level programming models. The same attributes, however, also
add overheads to UCP, compared with UCT, that may hinder
both performance and scalability.

In this work, we describe the UCX design and study the
performance of UCX over InfiniBand with regard to its uti-
lization as a communication middleware for MPICH. We target
core functions of UCP, aiming to understand the performance
shortcomings of the two-level design and the tradeoffs from
the utilization of UCP over UCT in performance, scalability,
functionality, and programming ease. In particular, we focus
on specific UCP functions and (1) compare their performance
with the equivalent operations in UCT and Verbs API, (2)
analyze their performance in terms of instructions and time,

1The alpha release of MPICH 3.3a1 is available at https://www.mpich.org/
downloads/.



(3) identify sources of overhead in UCP compared with UCT,
and (4) apply fixes in UCX to minimize these overheads. We
evaluate the impact of these fixes and discuss optimizations
in the UCX design that can enhance the performance and
scalability of UCP, without compromising the programmability
and functionality it offers.

II. BACKGROUND

In this section, we provide background information on
the InfiniBand interconnection network and the UCX design,
which is key to analyzing and understanding the performance
of UCX over InfiniBand.

A. The InfiniBand interconnection network

InfiniBand is a switched interconnection network, used for
interconnecting large clusters and supercomputers. It is one
of the most popular interconnection networks, as indicated by
its share in the recent Top500 list,2 which reached 37.4% in
December 2016. It provides two-sided (send-receive) and one-
sided (RDMA) semantics for communication. Communication
over InfiniBand uses the queue pair (QP) model, where a
send and a receive queue are used for issuing and receiving
messages, respectively. A work request is submitted to these
queues, where the hardware can read it to perform the commu-
nication. Additionally, a completion queue is associated with
each queue pair for notification of communication completion.
Communication over InfiniBand requires all memory regions
that are accessed by the hardware to be registered. In order to
alleviate the overheads of memory registration, short messages
can be inlined in the work requests, whereas larger messages
can take advantage of a zero-copy protocol. This strategy
means that the work request gets only a description of the
memory buffer and later reads the data directly from the buffer,
without any CPU involvement.

The current InfiniBand fabric implements various transport
mechanisms. The most common are the connection-oriented
Reliable Connection (RC) and the connectionless Unreliable
Datagram (UD). The latter implements only two-sided com-
munication semantics. Furthermore, UD can transfer only
one MTU of data (usually around 4 kilobytes) at a time.
Therefore, UD usually offers lower bandwidth and higher
latency compared with RC. On the other hand, RC has high
demands in resources: to fully connect N processes, RC re-
quires O(N2) connections and O(N) queue pairs per process.
UD is connectionless, and therefore only a single UD QP
per process is required. To reduce the memory consumption
of RC, the InfiniBand specification introduced shared receive
queues, as well as the eXtended RC transport. Recently, Mel-
lanox introduced the Dynamically Connected (DC) transport
service, which dynamically creates and destroys connections,
constraining the memory consumption close to the level of
UD, while offering memory semantics, as RC. However, the
scalable design of DC comes at a cost to performance, mainly
because of connection transaction overheads [10].

2https://www.top500.org/

Hardware

OS

User APIs

UCX

InfiniBand HCA

HCA Driver
Kernel-level

Verbs

Driver API Verbs API

UCT

UCP

(a) Common InfiniBand OFED stack
and UCX.

Hardware

OS

User APIs

UCX

MLX InfiniBand HCA

MLX5 Driver
Kernel-level

Verbs

MLX5
Driver API

Verbs API

UCT

Accel.
Verbs

UCP

(b) MLX5 InfiniBand OFED stack and
UCX with accelerated Verbs.

Fig. 1. InfiniBand OFED stack and UCX.
1status = ucp_put(ep, buffer, size, remote_addr, rkey);

if (status != UCS_OK)
3exit(ERROR);

ucp_ep_flush(ep);

Fig. 2. RDMA write with remote completion in UCP

The user-space interface for InfiniBand is the Verbs API,
which comes as a user-level library with the OFED stack and
lies on top of the kernel-level Verbs API. The kernel-API
collaborates with the vendor-specific InfiniBand driver and
driver library to access the InfiniBand hardware. An overview
of the InfiniBand software stack is depicted in Figure 1a.

B. UCX design

Figure 1a shows how the UCX software stack is placed on
top of InfiniBand. UCX consist of two layers: the lower layer
UCT and the upper layer UCP. In the following paragraphs,
we discuss the main differences between these two layers, as
well as the most important semantics inside UCX.

1) Communication context: The main difference between
UCP and UCT is the communication context. UCT is designed
as a communication layer over a single communication device
and transport layer, whereas UCP abstracts the usage of
different devices and transport layers for the user. Therefore,
UCT defines a memory domain over a device (e.g., InfiniBand
or shared memory) to allocate and register any memory used
for communication and an interface for a specific transport
over a specific device (e.g., UD and RC for InfiniBand). Both
the memory domain and interface come with a set of their own
attributes, derived from hardware capabilities. For example,
memory domain attributes include memory allocation limits
and memory access credentials, whereas interface attributes
include the communication and connection capabilities of the
transport mechanism and thresholds for protocol switching.
UCP encapsulates these multiple UCT memory domains and
interfaces in a single communication context and selects a
suitable interface for a communication operation, according
to hardware properties and performance criteria.

2) Communication primitives: The UCT API defines a set
of functions for communication, such as remote one-sided and
atomic operations and active messages. Thereby, different pro-
tocols can be defined for different message transfer methods.
For example, for put/get communication immediate (short),



buffered copy (bcopy) and zero-copy message transfers can
be defined. Not every function needs to be implemented for
each transport layer, however; the implementation in effect
depends on the hardware capabilities. UCP abstracts these low-
level protocol functions into high-level functions: the UCP
API offers functions for RMA operations, remote atomic
memory operations, and tag matching. Tag matching currently
is implemented by using UCT active messages. In the future,
UCX will make use of hardware support for tag matching.
UCP internally selects the appropriate transfer protocol and
performs message fragmentation, if necessary. Therefore, UCP
exposes a single function for any message size. Moreover,
UCP offers nonblocking communication functions for tag
matching and RMA operations, which allow immediate reuse
of communication resource, whereas UCT provides only non-
blocking operations.

3) Communication entities: Workers are the core commu-
nication entities in UCX, in both UCP and UCT. The main
feature of a worker is that it has its own progress engine.
This progress engine always enforces progress over all open
interfaces. Progress can be made by calling the progress func-
tion uct/ucp progress or by ordering or completion operations
(fence/flush), which may require some progress to complete.

To enable communication with another worker, each worker
creates an endpoint and connects it to the endpoint of the
remote peer. A UCT endpoint is tied to a specific interface
(e.g., UD or RC), whereas a UCP endpoint holds multiple UCT
endpoints, one for each interface in use. Therefore, in UCP,
an endpoint always connects two workers. Internally, UCP
is responsible for selecting the best interfaces/UCT endpoints
from those available to perform a communication operation.

4) Connection establishment: When a worker in UCP cre-
ates an endpoint, the UCP layer selects one or more interfaces
for each type of operation and creates the respective UCT
endpoints, one per interface, all associated with the parent
UCP endpoint. In practice, UCP can select multiple interfaces
for RMA and atomic memory operations, a single interface
for active messages, and a single interface for wireup.

If an interface corresponds to a connectionless transport,
then it can connect to the remote interface immediately. This
is what happens in UCP: UCT endpoints over connectionless
transports immediately establish connection. If the interface
corresponds to a P2P transport, however, UCP creates a
stub endpoint. The wireup UCT endpoint, which is always
connectionless, undertakes connection of all UCT endpoints
over P2P transports, by immediately sending wireup requests.
The stub endpoint is eventually destroyed when all UCT
endpoints of the parent UCP endpoint are connected.

III. UCX AS MIDDLEWARE OVER INFINIBAND

In this section, we discuss the suitability of UCX interfaces
as communication middleware and examine their performance,
in comparison with their network-specific counterparts.

A. Middleware tradeoffs among UCP, UCT, and Verbs
The requirements for communication middleware on large-

scale systems are manifold: performance, scalability, portabil-

ity, and functionality. Often, finding the right design can be
seen as a tradeoff between these factors: better scalability can
come with a loss in performance, and adding new functionality
can limit the portability and add new overheads, which then
result in lower scalability and/or performance.

While the two-level design of UCX attempts to address all
the requirements, the choice of the right middleware results
from a tradeoff among the desired properties. UCP offers high
functionality, since it handles multiple transports, undertakes
connection establishment, and selects the transfer method, all
in a transparent way, while exposing high-level abstractions.
Unlike UCP, the functionality of UCT is limited: its focus is to
provide a unified API for low-level communication functions.
Both APIs are portable, since UCT can be implemented for any
network architecture. However, since UCT does not require
that all functionality be supported by all architectures, its
portability is limited. On the other hand, each API adds some
overhead over the native network operations; the overhead
increases with additional functionality. Therefore, one can
expect that UCP has a lower performance than does UCT.
Scalability is related to the memory requirements of the
software, as well as the memory requirements of the transport.

The InfiniBand support for UCT is built on top of InfiniBand
Verbs. Since it is closer to the hardware, we expect Verbs to
have better performance than UCT and UCP have. However,
the Verbs API does not provide any high-level functionality,
and it is specific to InfiniBand and thus not portable to
other architectures. Although it is theoretically possible to
implement the complete communication of an application on
Verbs, doing so requires significantly more programming effort
and lines of code.

We note that UCX comes with a highly optimized UCT-
Verbs implementation (Accelerated Verbs, hereafter denoted
as AVerbs), using the latest Mellanox MLX5 driver. Figures 1a
and 1b demonstrate the differences. Using normal Verbs,
UCT lies on top of the common InfiniBand OFED stack.
In contrast, the optimized UCT implementation over MLX5
directly accesses the driver functionality. Core communication
functions are directly implemented inside UCT, which makes
calls directly to the driver or utilizes the user-level driver li-
brary. This approach leads to fewer and smaller data structures
and reduces branches and function calls, thereby increasing the
performance of communication by minimizing the overhead.

Overall, the optimal middleware for InfiniBand would be
scalable and combine the near-native performance of Verbs
with the high-level abstractions and portability of UCP. We
argue that in order to maximize all desired properties, the key
is not to rely on lower-level middleware but to identify sources
of overhead in upper-level functions and work toward their
minimization—and, if possible, their elimination. To this end,
we have conducted experiments to compare the performance
of the various APIs.

B. Experimental setup

For our experiments, we use two nodes of two Intel
Xeon E5-2699 CPUs, interconnected over InfiniBand using



1 2 4 8 16 32 64
Size (B)

1.50

1.55

1.60

1.65

1.70
La

te
nc

y 
(u

s)
Short (Inline)

UCP - RC
UCT - RC
Verbs - RC

128 256 512 1024 2048 4096 8192
Size (B)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0 Buffered Copy

Fig. 3. RDMA write latency over InfiniBand RC

1 2 4 8 16 32 64 128
Size (B)

1.40

1.45

1.50

1.55

1.60

1.65

La
te

nc
y 

(u
s)

Short (Inline)
UCP - xRC
UCT - xRC
Verbs - xRC

256 512 1024 2048 4096 8192
Size (B)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0 Buffered Copy

Fig. 4. RDMA write latency over InfiniBand xRC

a Mellanox InfiniBand EDR HCA of the MT27700 Family
(ConnectX-4) and a Mellanox FDR-10 switch. We base our
experiments on UCX version 1.0, (7/13/2016 snapshot), com-
piled with the Intel C++ Compiler 16.0.0. We compile UCX
with -O3 optimization, interprocedural optimization, inlining,
and enabled AVX/SSE4.2 instructions, so that UCX libraries
have minimum instruction count. We use the Intel Software
Development Emulator v7.48 for instruction analysis.

C. Assessing the performance of UCP, UCT, and Verbs

To assess the performance overheads added by UCP over
UCT and UCT over the lower-level API, Verbs, or AVerbs
of UCX, we compare the three APIs in terms of latency
for an RDMA write operation with remote completion over
InfiniBand. The operation consists of two parts, In the first
part, the communication is started (and for blocking operations
locally completed). We refer to this part as Put. The second
part, referred to as Flush, guarantees remote completion of all

1 2 4 8 16 32 64 128 256 512 102
4

204
8

409
6

819
2

Size(B)

0

500

1000

1500

2000

2500

In
st
ru
ct
io
ns

UCP Put - RC
UCP Flush - RC
UCT Put - RC
UCT Flush - RC
Verbs Put - RC
Verbs Flush - RC

Fig. 5. Instruction breakdown for RDMA write over InfiniBand RC

1 2 4 8 16 32 64 128 256 512 102
4

204
8

409
6

819
2

Size(B)

0

200

400

600

800

1000

1200

1400

1600

In
st
ru
ct
io
ns

UCP Put - xRC
UCP Flush - xRC
UCT Put - xRC
UCT Flush - xRC
Verbs Put - xRC
Verbs Flush - xRC

Fig. 6. Instruction breakdown for RDMA write over InfiniBand xRC

previous issued operations. Figure 2 depicts the implementa-
tion of this operation in UCP.

The comparison for RDMA write over InfiniBand RC is
depicted in Figure 3. To avoid comparison of different transfer
protocols (e.g., short, buffered, and zero-copy), we use the
same transfer protocols and thresholds for UCT and Verbs
as are used by the UCP layer. UCP uses the short protocol
for messages of length up to 98 bytes for RC and buffered
transfers (bcopy) for larger messages. Internally, UCT deploys
the InfiniBand inline option for small messages and performs
memory copy operations to preallocated buffers for buffered
copies. The buffer size can be configured by the user. In
this and all our subsequent experiments, we use the default
value of 8 kilobytes. If the message length exceeds the buffer
length, it is fragmented into multiple chunks of 8 kilobytes.
For comparison, we imitate this behavior in our UCT and IB-
Verbs implementations. UCT also implements functions for
zero-copy transfers, although in its current version UCP does
not utilize those for RDMA operations.

Figure 3 shows that UCP adds some non-negligible la-
tency over UCT, especially for short messages. However, the
overhead added by UCT over Verbs is minimal and becomes
negligible for larger message sizes. We also compare RDMA
write over InfiniBand xRC, that is, the AVerbs implementation
in UCT for RC. In Figure 4 we observe that the overall
latency drops in comparison with RC. Similar to RC, UCP
adds some overhead over UCT, and UCT adds some overhead
over AVerbs, although the difference between UCP and UCT
is smaller. In addition, for buffered transfers (messages larger
than 220 bytes), UCP overheads over UCT become negligible.

To understand the origin of this difference in performance,
as a first step we compare the number of instructions for the
Put and Flush operations for the three APIs. Figures 5 and 6
show the instructions needed for RDMA write over InfiniBand
RC and xRC, respectively. First, we observe that the difference
in latency between the three interfaces in both cases stems
from an equivalent difference in instructions. Second, the
number of instructions for xRC is less than half that for RC,
although this decrease does not translate to a similar decrease
in latency, since most of the latency is spent on the network.
Thus, even with xRC, hardware latencies render the software
overheads insignificant. Third, the number of instructions for
Put increases with the message size in all cases: the additional



UC
P 
pu
t -
 8
B 
- R

C
UC

T 
pu
t (
sh
or
t) 
- R

C
UC

P 
pu
t -
 8
B 
- x
RC

UC
T 
pu
t (
sh
or
t) 
- x
RC

UC
P 
pu
t -
 1
02
4B

 - 
RC

UC
T 
pu
t (
bc
op
y)
 - 
RC

UC
P 
pu
t -
 1
02
4B

 - 
xR

C
UC

T 
pu
t (
bc
op
y)
 - 
xR

C

0

100

200

300

400

500

600

In
st
ru
ct
io
ns

RESOLVE_RKEY_RMA
UCT put

Function calls
(A)Verbs send

Other
memcpy

Fig. 7. Instruction analysis for UCP Put

instructions are consumed for memory copies, as the message
size grows. This breakdown of instructions to Put and Flush
leads us to important observations about overheads in UCX:

• For small message sizes the majority of instructions in
UCP and UCT are consumed by Flush, while in Verbs
(and AVerbs) more instructions are consumed by Put.

• We observe a slight decrease in instructions for Put and a
significant decrease in instructions for Flush, from UCP
to UCT to Verbs (and AVerbs). Hence, we can infer that
UCX adds significant overheads to the Flush operation,
which inflate from UCT to UCP, and smaller but not
negligible overheads to the Put operation.

These observations motivate us to look further into the
differences of the three APIs and to identify the sources of
overhead in the UCX software stack.

IV. ANALYZING UCP OVERHEADS

To understand the performance shortcomings of UCX, we
analyze core UCP functions in terms of instructions, to identify
necessary overheads added by UCP providing high-level ab-
stractions and UCT providing a unified API, and unnecessary
overheads, which can be avoided with modifications in the
UCX software design.

A. RDMA operations

The UCP API provides functions for blocking and non-
blocking RDMA write and read. The blocking version of the
functions (ucp_put and ucp_get) first selects the appro-
priate UCT interface from those available, then selects the
transfer protocol (short buffered copy or fragmented buffered
copy) and calls the respective UCT function. The nonblocking
versions (ucp_put_nbi and ucp_get_nbi) also select
the interface and transfer method. In contrast to the blocking
version, however, the nonblocking version does not necessarily
call the underlying UCT function; instead it may push a
request for the operation in a queue, which is handled later.
A request is created under two occasions: if no resources are
available at the time of the function call or if the message
is longer than a preset size. Here, we analyze the blocking
version of RDMA operations; the nonblocking version adds

a de facto overhead associated with the request creation
and queue insertion. The goal is to determine the minimal
overhead that is added because of the UCP layer. We focus on
ucp_put; however, we can generalize for ucp_get, since
the structure of the function is identical.

Figure 7 shows the instruction analysis for ucp_put for
a short message (8 bytes) and a longer message (1,024
bytes), transferred with buffered copy, over InfiniBand RC
and xRC (RDMA operations are not supported over UD and
currently are not emulated in UCX). Most of the instructions in
ucp_put are spent on the UCT operations, for both message
sizes and transfer methods. Similarly, most of the instructions
in UCT are spent on the AVerbs or Verbs send call. There is an
extreme decrease in instructions from Verbs (RC) to AVerbs
(xRC). Part of the difference results from the assimilation of
the Verbs functionality inside UCT. This means that some
operations that were previously executed in the Verbs layer
are moved to the UCT layer. For example, the network-
specific work request is directly created in the UCT layer.
This approach avoids the overhead of first creating a Verbs
work request and translating this to the network-specific work
request later. We count these operations as other instructions.
Accordingly, uct_put spends some instructions on work-
request creation and other bookkeeping operations.

The decrease in instructions in (A)Verbs from short to
longer messages is artificial: the 8-byte message is sent inline,
so the memory copies take place within the (A)Verbs send call.
Focusing on ucp_put, we see that 15 (for short) to 19 (for
buffered copy) instructions are spent on function calls. UCP
uses function pointers to acquire the appropriate UCT function
for the transport in use. This design adds some flexibility, since
it allows UCX to choose the best UCT endpoints dynamically
during runtime and also allows the support of multiple trans-
port layers, such as InfiniBand and shared memory, at the
same time. However, this flexibility comes with some cost,
since function pointers cannot be optimized with inlining or
interprocedural optimizations. In addition, 6 (for short) to 15
(for buffered copy) instructions are spent on checks for the
length of messages and fragmentation handling. Four instruc-
tions can be avoided by setting a UCX configuration flag to
avoid checks (usually set for the installation configuration).

A large number of instructions (35), however, come from
the RESOLVE_RKEY_RMA function. Many of these instruc-
tions are also expensive (such as the modular operation). As
explained in Section II, a UCP endpoint holds multiple UCT
endpoints, one for each interface/transport method. If a Put
operation is initiated, the UCP layer has to decide which
transport layer to use. For this decision, UCP holds a map
of indexes to look up transport methods that are suitable
for RMA operations. For example, one-sided communication
is supported for shared memory and (x)RC endpoints but
not for (x)UD endpoints. In addition, for RMA operations,
UCP holds a bundle of UCT keys for access to the remote
memory region. Each key belongs to the memory domain
of the transport method. For example, if UCP is used for
communication over InfiniBand and shared memory, the UCP



UC
P 
en
dp
oin

t f
lus
h

UC
P 
wo
rk
er
 p
ro
gr
es
s

UC
T 
wo
rk
er
 p
ro
gr
es
s

RC
 ifa

ce
 p
ro
gr
es
s

UD
 ifa

ce
 p
ro
gr
es
s

0

200

400

600

800

1000

In
st
ru
ct
io
ns

RC endpoint flush
UCP worker progress
UCT worker progress

Other
xRC iface progress
UD iface progress

Poll RX
Poll TX

(a) UCP endpoint flush over RC
UC

P 
en
dp
oin

t f
lus
h

UC
P 
wo
rk
er
 p
ro
gr
es
s

UC
T 
wo
rk
er
 p
ro
gr
es
s

xR
C 
ifa
ce
 p
ro
gr
es
s

xU
D 
ifa
ce
 p
ro
gr
es
s

0

50

100

150

200

250

300

350

400

450

In
st
ru
ct
io
ns

xRC endpoint flush
UCP worker progress
UCT worker progress

Other
xRC iface progress
xUD iface progress

Poll RX
Poll TX

(b) UCP endpoint flush over xRC

Fig. 8. Instruction analysis for UCP endpoint flush after a single UCP Put
operation (8B)

key may hold a key for each of the two memory domains. The
function RESOLVE_RKEY_RMA resolves the UCP endpoint to
a UCT endpoint, using the UCP memory key. It determines
which UCT endpoint should be used for this communication
operation and returns the corresponding configuration, such as
thresholds for switching from short to buffered copy and the
minimum length of the preregistered buffer for buffer copy.

Again, this design was chosen to provide some flexibility
during runtime. One may argue that, for example, shared
memory should always be used for intranode communication
and that InfiniBand should be used for internode commu-
nication, and, therefore, the required information should be
saved in the endpoint for all RMA or AMO operations. Yet,
this approach would force the user to always use the same
communication protocol, which is not always possible. One
example is the handling of user-allocated buffers, which cannot
be registered for shared-memory communication over most
UCT shared-memory interfaces (except for XPMEM), while
InfiniBand (and thus the UCT-InfiniBand interface) allows this.
Still, we argue that the RESOLVE_RKEY_RMA function is
expensive and adds unnecessary overhead to UCP Put and
Get operations, since this information becomes available at an
earlier time. It is thus not necessary to redo the computation for
every new communication operation. We discuss this overhead
and its optimization in the next section.

B. Progress / Flush operations

In order to explicitly make progress on communication
operations in UCP, ucp_worker_progress has to be
called. In addition, UCP provides Flush operations for the
worker and the endpoint, namely, ucp_ep_flush and
ucp_worker_flush, which ensure that all one-sided local
and remote communication operations are completed on the
local side. Note that blocking functions internally also call
progress, if no communication resources are available. We
focus our analysis on the ucp_ep_flush function, since we
can generalize its case for the flush operation on the worker.

Figure 8 depicts the instruction analysis for
ucp_ep_flush over RC and xRC, after a single RDMA
write operation of an 8-byte message with ucp_put over
RC and xRC, respectively. We ensure that no other operations

are outstanding, to avoid counting additional poll instructions.
The call path is the same for both interfaces, RC and xRC.
Since a UCP endpoint can have multiple UCT endpoints,
ucp_ep_flush iterates over all UCT endpoints and initiates
a flush operation on the interface on which the endpoint is
attached. In our execution configuration, we initiate UCP to
use only (x)RC endpoints; thus, UCP should flush only the
(x)RC interface. The interface flush operation detects whether
any communication operations are in progress. If so, progress
is called on the UCP and subsequently the UCT worker.

The UCT worker progresses all open UCT interfaces. Our
analysis reveals that, besides the (x)RC interface, progress is
called on the (x)UD interface. The interface progress always
polls first the receive completion queue (RX queue) and sub-
sequently the send completion queue (TX queue). Since in our
case all communication functions are completed after calling
progress once, a final call for flush on the (x)RC interface
returns with completion, so the operation is completed. If
this is not the case, the flush operation calls progress until
all outstanding operations are completed. Note that the UCX
working group has decided to add a nonblocking flush opera-
tion, although this operation was not implemented at the time
of this work. The sequence of calls on the UCP endpoint flush
reveals how UCP handles multiple endpoints and interfaces.
It also shows that performance is influenced by the way UCP
handles initialization and connection establishment.

If UCX is used with InfiniBand, UCP always utilizes the
UD interface for wireup, since it is connectionless, whereas
the (x)RC interface requires a connection to start any data
transfer. Whenever a UCP endpoint is created, UCP creates
only a stub endpoint, which then creates an auxiliary UCT
endpoint over (x)UD. The (x)UD interface is then used to
establish the connection of the actual UCT endpoint over
(x)RC. Note that the (x)UD endpoint currently is needed only
for wireup, because, with the current criteria of UCP, (x)RC
is always the selected endpoint for all InfiniBand-supported
operations: RDMA and active messages/tag-matching. When
the wireup is complete, the UD (xUD) endpoint is destroyed.
However, the (x)UD interface is still open, and progress is
called over it. Progress over the UD interface consumes 306
instructions, and progress over the xUD interface consumes
129 instructions. These results explain the difference in latency
between UCP and UCT for RDMA write, demonstrated in
Section II: in UCT, we create and connect endpoints directly
over the (x)RC interface—the (x)UD interface is never opened.
In the following section, we discuss when this overhead is
necessary, and we propose an optimization.

A second observation is that the receive queue (RX queue) is
polled, although we perform only RMA operations, which are
always completed in the TX queue. This overhead is necessary
to fully support UCP functionality, since the progress engine
needs to check for received active messages. However, this
overhead it is not present in our Verbs (and AVerbs) bench-
marks for RDMA write latency, thus explaining part of the
performance difference between UCT and Verbs (or AVerbs).

Comparing Verbs and Averbs, we note that TX and RX



1 2 4 8 16 32 64 128
Size (B)

1.50

1.55

1.60

1.65

1.70
La

te
nc
y 
(u
s)

Short (Inline)

128 256 512 1024 2048 4096 8192
Size (B)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0 Buffered Copy
UCP - RC
UCP - OPT_RKEY - RC
UCP - xRC
UCP - OPT_RKEY - xRC

Fig. 9. RDMA write latency in UCP with optimized remote key resolution

1 2 4 8 16 32 64 128
Size (B)

1.50

1.55

1.60

1.65

1.70

La
te
nc
y 
(u
s)

Short (Inline)

128 256 512 1024 2048 4096 8192
Size (B)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0 Buffered Copy
 UCP - RC
UCP - OPT_TX_POLL - RC
UCP - xRC
UCP - OPT_TX_POLL - xRC

Fig. 10. RDMA write latency in UCP with optimization to avoid TX Polling

polling over UD consume an equal number of 96 instructions,
in contrast to UD, where they consume only 38 and 25
instructions, respectively. Additional instructions (measured as
other) within the xUD interface progress function correspond
to polling for receive requests over an additional queue, used
for support of IPoIB along with RX polling. Overall, however,
the instruction count for polling the RX and TX queues is
significantly decreased for AVerbs, compared with Verbs.

V. OPTIMIZING UCX PERFORMANCE FOR INFINIBAND

Based on our analysis of core UCP functions, we apply opti-
mizations in UCX to improve its performance over InfiniBand,
and evaluate their impact on overall UCP performance.

1 2 4 8 16 32 64 128
Size (B)

1.50

1.55

1.60

1.65

1.70

La
te
nc
y 
(u
s)

Short (Inline)

128 256 512 1024 2048 4096 8192
Size (B)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0 Buffered Copy
UCP - RC
UCP - OPT_UD_PROGRESS - RC
UCP - xRC
UCP - OPT_UD_PROGRESS - xRC

Fig. 11. RDMA write latency in UCP with optimization to avoid progress
over the (x)UD interface

A. Optimizations for UCX performance

1) Optimizing RDMA functions in UCP: For RDMA func-
tions, we focus on reducing the overhead coming from the
RKEY_RESOLVE_RMA function. Two key observations enable
this optimization. First, the UCT endpoint and UCT remote
key used for RMA operations become available prior to calling
an RMA communication function. In UCP, a worker that
wishes to perform operations that require registered memory
on the remote side (RMA or atomic memory operations)
needs to acquire the UCP remote key of the remote registered
memory. Once this key is received, it has to be unpacked,
by using the ucp_rkey_unpack function. This function
checks, unpacks, and stores the UCT remote keys for reachable
remote interfaces in the UCP remote key structure. Second, it
is not necessary to perform the resolution from a UCP to a
UCT key with each call to an RMA communication function,
since the interface, the corresponding UCT endpoint and UCT
key are static after the remote key is unpacked.

To reduce the number of instructions spent on the
UCP-to-UCT translations for RMA operations, we call the
RKEY_RESOLVE_RMA function in the ucp_rkey_unpack
function. In this way, the operation is performed only once and
is no longer on the critical path of communication. To make
the outcome of the function available in RMA communication
functions, we store the index for the UCT remote key, the
RMA configuration, and the UCT remote key for RMA with
the ucp_rkey data structure. Since the only other types
of operations that require a remote key are atomic memory
operations, we also store the AMO configuration and the
UCT remote key for AMO with the ucp_rkey and eliminate
the bundle of UCT remote keys from the structure, along
with the map of reachable memory domains. Unfortunately,
this change duplicates the information for RMA and AMO
configurations, which is also stored with the ucp_ep data
structure. However, this duplication at the moment allows us to
save multiple instructions. RMA (and AMO) communication
functions access only the index for the UCT endpoint, the
RMA (or AMO) configuration, and the UCT remote key.
Storing the configuration with the UCP remote key makes
access to it faster, since accessing it in the UCP endpoint
requires multiple expensive pointer operations.

2) Optimizing the UCP progress engine: As we showed in
Section III, overheads in the UCP progress engine are related
to the way UCP handles multiple interfaces over InfiniBand
and connection establishment in UCP. We now examine the
case where the only device is InfiniBand, all communications
take place over RC or xRC, and the wireup transport/interface
is always UD or xUD. Our optimization suggestions, however,
can also prove useful for multiple transports. In the optimal
case, we would like to be able to eliminate the overhead
from progressing the UD interface, since it is not used for
communication. If a new endpoint is created, however, a
request for wireup can arrive at any time, Therefore, the
progress engine must ensure progress of the (x)UD interface.

We should not eliminate polling on the receive queue for



the connectionless interface, because we cannot ensure that an
active message will not arrive. Nevertheless, we can eliminate
polling on the send queue (TX queue) for any interface, if
no messages are sent. Initially, we attempted to perform this
optimization by exploiting existing bookkeeping structures in
UCT, which count the number of sent messages and would
permit us to skip TX polling when this number is zero.
However, we found inconsistencies in the value of those
counters for the (x)UD interface. Therefore, we take a different
approach. In particular, we modify the uct_iface_t data
structure in UCT, adding a counter of “active” endpoints
over the interface. The counter is incremented when a new
endpoint is connected and decremented when the endpoint is
destroyed. In this way, we can avoid polling the TX queue of
an interface if no endpoints are connected over it. We note
that this approach results in a more restrictive condition on
allowing avoidance of TX polling, and we aim to revisit our
original approach in future work.

A deeper study into UCP initialization and wireup process
revealed that the current UCP implementation permits the
elimination of progress over the (x)UD interface entirely,
under certain conditions. As explained in Section III, when
using InfiniBand, currently the (x)UD interface is used only
for wireup, in other words, for the connection of created UCP
endpoints. In the ideal case, a UCP endpoint should be created
but never connected until a communication operation is called.
In its current design, however, UCP creates stub endpoints for
each UCP endpoint, which initiate the wireup of the actual
endpoints over the (x)UD interface as soon as the endpoint is
created. The wireup requests are enqueued in the respective
TX/RX queues upon initiation; and thus, when a worker
calls its progress engine (upon ucp_worker_progress or
ucp_worker_flush or ucp_ep_flush), any endpoint
associated with the worker may be wired up, even if no
communication takes place over it. This approach results in
all endpoints being connected after a few calls to the progress
engine. The stub endpoint is then destroyed, along with the
(x)UD endpoint associated with it.

This design guides our second optimization, which is the
elimination of progressing the (x)UD interface after wireup.
To enable the optimization, we use the counter for “active”
endpoints we constructed for avoiding TX polling. In this case,
however, when no endpoints are connected over the (x)UD
interface (or any other interface under the same condition),
the counter value is zero, and the interface is not progressed.

B. Evaluation

To evaluate the overall UCP performance and the impact
and potential of our optimizations, we first evaluate each
optimization on the latency and instruction count of RDMA
write with remote completion. Subsequently, we measure the
bandwidth and message rate for RDMA write (Put) and
RDMA read (Get) in UCP, as well as in two optimized
versions: one that eliminates the remote key translation and
unnecessary TX polling and one that eliminates the remote key
translation and unnecessary progress over the (x)UD interface.

2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M
Size (B)

4500

5000

5500

6000

6500

7000

7500

8000

8500

Ba
nd
w
id
th
 (M

B/
s)

UCP
UCP - OPT_TX_POLL + OPT_RKEY
UCP - OPT_UD_PROGRESS + OPT_RKEY

1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K
Size (B)

0

1000000

2000000

3000000

4000000

5000000

6000000

M
es
sa
ge
 R
at
e

(a) RDMA write over RC

2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M
Size (B)

6000

6500

7000

7500

8000

8500

9000

9500

Ba
nd
w
id
th
 (M

B/
s)

UCP
UCP - OPT_TX_POLL + OPT_RKEY
UCP - OPT_UD_PROGRESS + OPT_RKEY

1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K
Size (B)

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

M
es
sa
ge
 R
at
e

(b) RDMA write over xRC

Fig. 12. Evaluation of bandwidth and message rate with UCP RDMA write

2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M
Size (B)

2000

2500

3000

3500

4000

4500

5000

Ba
nd
w
id
th
 (M

B/
s)

UCP
UCP - OPT_TX_POLL + OPT_RKEY
UCP - OPT_UD_PROGRESS + OPT_RKEY

1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K
Size (B)

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

M
es
sa
ge
 R
at
e

(a) RDMA read over RC

2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M
Size (B)

2000

2500

3000

3500

4000

4500

5000

Ba
nd
w
id
th
 (M

B/
s)

UCP
UCP - OPT_TX_POLL + OPT_RKEY
UCP - OPT_UD_PROGRESS + OPT_RKEY

1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K
Size (B)

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

M
es
sa
ge
 R
at
e

(b) RDMA read over xRC

Fig. 13. Evaluation of bandwidth and message rate with UCP RDMA read

For this benchmark, we use the nonblocking functions of
UCP for Put and Get operations, namely, ucp_put_nbi
and ucp_get_nbi. We issue 256 operations (equal to the
default length of the TX queue in UCX) before calling
ucp_ep_flush for local and remote completion.



Figure 9 shows the impact of eliminating the
RESOLVE_RKEY_RMA function on the latency of RDMA
write with remote completion in UCP (performed with
ucp_put and ucp_ep_flush). Although we observe a
decrease in latency, it corresponds to less than 1% and is
thus negligible. In all cases, the optimized version eliminates
27 of the 35 instructions of the RKEY_RESOLVE_RMA
function; 8 instructions are still consumed to access the UCT
endpoint index, remote key, and RMA configuration in the
ucp_rkey data structure. We argue that a redesign of UCX
data structures such as ucp_ep and ucp_rkey can help
eliminate any overhead from UCP-to-UCT resolutions.

Figure 10 depicts the effect of avoiding unnecessary polling
of the TX queue on the latency of RDMA write with remote
completion in UCP. We notice a significant performance
difference in latency for RC and a less significant performance
difference for xRC, since TX polling is faster in the case
of AVerbs. Figure 11 demonstrates the effect of avoiding
unnecessary progress on the (x)UD interface on the latency of
RDMA write, where we notice a significant decrease in latency
for RC for all message sizes and a smaller but still noteworthy
decrease in latency for xRC. As for the instruction count,
the instructions spent on ucp_ep_flush, called following a
single ucp_put operation for an 8-byte message, decrease by
12% when TX polling is avoided and by 29.8% when progress
over the UD interface is omitted, for communication over the
RC interface, In contrast, for the xRC interface, the equivalent
decrease is 4.8% and 26.6%.

Figure 12 shows the bandwidth and message rate for RDMA
write using RC and xRC, respectively. Looking at the reference
UCP, we see in both cases that the highest bandwidth is
achieved at 8,192 bytes, which equals the length of the internal
buffer used for buffered transfers. Beyond this point, the mes-
sages are fragmented, and thus the overall number of requests
exceeds the length of the TX queue, causing additional polling
for completion and the creation of more requests. For the
RC interface, the bandwidth remains constant, since the Put
operations take up a larger percentage of instructions and time,
hiding any latency due to polling. For the xRC interface, the
analogy is reversed. A larger percentage of instructions is spent
on polling functions, hence there is a decrease in bandwidth.

The message rate is constant for all sizes up to 8 bytes, then
drops up to 64 bytes for RC and 128 bytes for xRC because of
additional memory copies inside the Verbs (AVerbs) functions.
As the transfer methods switches from short to bcopy, for
xRC, the message rate increases at 256 bytes before dropping
again, revealing that the switching point is suboptimal.

The bandwidth and message rate with our optimizations
follow the same behavior, since the optimizations have a flat
impact on the instruction count. By eliminating the remote
key translation and avoiding TX polling, we optimize the
bandwidth and message rate by up to 4% over RC and up
to 2.8% for xRC. The impact of eliminating the remote key
translation is more significant for medium-size messages that
are transfered with buffered copies, that is, within the range of
128 bytes up to 8,192 bytes. In bcopy transfers, the function

RKEY_RESOLVE_RMA is called twice due to request creation.
Avoiding polling the TX queue is more effective on RC, where
it takes up a larger percentage of instructions than in xRC.

On the other hand, avoiding progress on the (x)UD interface
has a larger impact on performance, especially for xRC, where
we notice an improvement of about 14% on the bandwidth and
message rate of small messages and 6–7% on the bandwidth
of large messages, in combination with the elimination of
the remote key translation. We note here that this larger
impact is an immediate result of the times progress over the
xUD interface is called in the unoptimized version, since it
is more often called for the xRC case than for RC. In the
case of communication over RC, when progress is called,
the TX/RX queues are polled for a number of requests,
which can be set at runtime by the user. We use the default
value, which is preset to 16 requests. In contrast, in the case
of communication over xRC, the TX/RX queues are polled
only for a single request. Subsequently, the ucp_ep_flush
operation on the 256 Put operations issued by our benchmark
calls ucp_worker_progress (and progress over the xUD
interface alongside) at least 256 times in the case of xRC,
compared with at least 16 times in the case of RC.

In Figure 13, we evaluate the bandwidth and message rate
for RDMA read. The highest bandwidth is achieved for mes-
sage sizes of 8,192 bytes, however, it drops beyond this point
both for the RC and xRC interfaces. It also drops significantly
at the message size of 128 kilobytes, where the aggregate
volume of messages read from the remote target exceeds the
last level cache size. Since the nonblocking get operation
in UCP uses buffered transfers for all message lengths, the
message rate drops gradually with the message size, as the
number of memory copies increase. We note that reading
from a remote target is a round-trip tour to the target side
and hence consumes more time on the network and the target
side than on the CPU of the side that initiates the operation.
Elimination of the function RKEY_RESOLVE_RMA therefore
does not improve the performance of the Get operation, since
it does not consume a significant part of the time spent
on the operation. Even combining this optimization with the
avoidance of polling the TX queue, no significant improvement
is achieved. However, by combining this optimization with
the avoidance of progressing the (x)UD interface, we improve
the bandwidth and message rate by about 1.5% for the RC
interface and by up to 3.5% for the xRC interface. We
conclude that any possible optimizations for the Get operation
in UCP should target the memory copies involved and the
overall cache utilization, rather than the instruction count.

VI. DISCUSSION AND OUTLOOK

Adding functionality to a communication layer often does
not come for free, since new functionality usually comes along
with new overhead. Still, our study on UCX reveals that there
often is room for optimizations that can close the performance
gap between between two layers, in our case UCP and UCT,
over InfiniBand, without sacrificing any of the functionality or
programming ease of the upper layer, UCP.



We performed our optimizations without any major redesign
in the UCP or UCT layers, while maintaining the size of
UCP data structures, so as not to compromise scalability.
Therefore, we were not able, for example, to fully eliminate
the instructions spent on UCP-to-UCT translations, or to avoid
function pointers. We believe that a careful redesign of UCP
data structures can improve and possibly eliminate this as well
as other overheads in the handling of multiple UCT interfaces
by UCP. We also find the utilization of function pointers from
the UCP to the UCT layer problematic, since they increase the
cost of calling UCT functions from UCP, a cost that cannot be
eliminated with any compiler optimizations. We thus advocate
a major restructuring of the UCX code to avoid this practice.

We showed that unnecessary polling of the send queue (TX
queue) can easily be avoided in order to improve latency and
bandwidth. Another possibility to reduce the overhead could
be using a single queue for sends and receives, in order to
avoid unnecessary polling under any case. We demonstrate,
however, that performance can gain a significant boost by
avoiding progress over interfaces that exist but are not in use
for the specific operation, as is the case of the (x)UD interface.
This practice should be generalized and enforced in UCP, since
in a setup with multiple transport layers and multiple interfaces
can exist, whereas only a single or a few may be in use at
a given time. This is especially useful because UCP allows
configuring at runtime which communication protocols should
be used for a given context. In MPI, if the implementation
uses more than one UCP context, it can be used to allow
more scalable communication. For example, one context can
be used for one-sided communication on a specific window,
while another can be used for point-to-point communication
in the global MPI world. That, however, can be implemented
efficiently only if the UCX worker progresses only those
resources used for the specific context. Moreover, the option
to poll a TX/RX queue for more than a single request should
be enabled for the xRC interface, to avoid calls to progress
functions over the multiple interfaces.

A significant problem for scalability in the design of UCX
is the current initialization/wireup process, which forces all
endpoints associated to a worker to connect, as soon as the
worker progresses once or a few times. This approach can
greatly impede scalability in a setup of thousands or millions
of processes, where UCP could easily result in an all-to-all
connectivity. In such a scenario, each process would maintain
connections and all the involved data structures with all other
processes, even if it would never use these connections.
We advocate a redesign of the UCP initialization process,
where endpoint connections will be created on-demand only
if communication over the endpoint is initiated. The current
design can be useful in small-scale setups, where all-to-all
connectivity can be enforced over a connection-oriented inter-
face, such as (x)RC on InfiniBand, eliminating the overheads
of an additional interface for wireup.

VII. CONCLUSIONS

In this paper, we studied the design and performance of
UCX on InfiniBand, motivated by its utilization as communi-
cation middleware for MPICH. We measured and compared
the performance of core functions in the upper layer of UCX,
the UCP API, with the performance of lower-level layers,
such as the transport layer of UCX, UCT, and the Verbs
API. We analyzed the instruction counts of these functions
to identify the sources of overheads; and we applied minimal
optimizations to alleviate these overheads, in order to enhance
the performance of UCP without altering its functionality.
Our study of the UCP design and our evaluation show that
the UCP layer can be improved in terms of performance
and scalability, to mitigate the performance degradation that
comes from offering high-level abstractions of communication
functions and transparently handling multiple transport layers.

ACKNOWLEDGMENT

This material was based upon work supported by the U.S.
Department of Energy, Office of Science, under contract DE-
AC02-06CH11357. Nikela Papadopoulou has received funding
from IKY fellowships of excellence for postgraduate studies
in Greece-SIEMENS program. We gratefully acknowledge
the computing resources provided and operated by the Joint
Laboratory for System Evaluation (JLSE) at Argonne National
Laboratory. We thank Gail Pieper for proofreading the paper.

REFERENCES

[1] B. Barrett, R. Brightwell, R. Grant, S. Hemmert, K. Pedretti, K. Wheeler,
K. Underwood, R. Riesen, A. MacCabe, and T. Hudson, “The Portals
4.0. 2 Networking Programming Interface, Sandia National Laborato-
ries,” October 2014, Tech. Rep. SAND2014-19568, Tech. Rep.

[2] D. Bonachea, “GASNet Specification, v1. 1,” 2002.
[3] P. Shamis, M. G. Venkata, S. Poole, A. Welch, and T. Curtis, “De-

signing a high performance openshmem implementation using universal
common communication substrate as a communication middleware,” in
Workshop on OpenSHMEM and Related Technologies. Springer, 2014,
pp. 1–13.

[4] J. Nieplocha and B. Carpenter, “ARMCI: A portable remote memory
copy library for distributed array libraries and compiler run-time sys-
tems,” in International Parallel Processing Symposium. Springer, 1999,
pp. 533–546.

[5] P. Shamis, M. G. Venkata, M. G. Lopez, M. B. Baker, O. Hernandez,
Y. Itigin, M. Dubman, G. Shainer, R. L. Graham, L. Liss et al., “UCX:
An Open Source Framework for HPC Network APIs and Beyond,” in
2015 IEEE 23rd Annual Symposium on High-Performance Interconnects.
IEEE, 2015, pp. 40–43.

[6] Mellanox Technologies Inc., “Mellanox IB-Verbs API (VAPI),” 2001.
[7] Cray Inc., “Using the GNI and DMMAP APIs,” Cray Software Docu-

ment S24463103, 2010.
[8] Argonne National Laboratory, “MPICH - high-performance, portable

MPI,” http://www.mpich.org, 2016.
[9] M. Baker, F. Aderholdt, M. G. Venkata, and P. Shamis, “Openshmem-

ucx: Evaluation of ucx for implementing openshmem programming
model,” in Workshop on OpenSHMEM and Related Technologies.
Springer, 2016, pp. 114–130.

[10] Adaptive transport service selection for MPI with InfiniBand network.
ACM, 2015.

View publication stats

https://www.researchgate.net/publication/318409171

