
Optimizing resource utilization on large-scale systems
through predictive communication modeling

Nikela Papadopoulou
National Technical University

of Athens
Athens, Greece, 15780

Georgios Goumas
National Technical University

of Athens
Athens, Greece, 15780

Nectarios Koziris
National Technical University

of Athens
Athens, Greece, 15780

ABSTRACT
On the path to exascale, supercomputers will grow to host
hundreds of million of cores and various complex heteroge-
neous processing elements, yet even today, users fail to lever-
age the existing compute power of large-scale systems, as
large classes of typical HPC applications are bound by non-
scalable communication phases. The ability to predict the
execution time of parallel applications can assist users, com-
pilers, runtime systems and schedulers with decision-making
for optimal resource utilization, performance optimizations,
power saving and resilience. In this work, we utilize predic-
tive models for communication time of HPC applications to
enable users in their decisions on resource allocation. We
construct predictive models for two supercomputers, Vilje
and Piz Daint, and we evaluate the predictive ability of our
models on a mini-application, a 3D-Jacobian relaxation. We
use this application and our predictions for its communi-
cation time to detect optimal execution configurations for
varying numbers of cores, up to 8192. Our evaluation shows
significant accuracy in the prediction of optimal execution
configurations, in terms of cores, nodes and processes per
node. Using the same predictions, we also detect configura-
tions that allow users to save up on their corehour budget.

1. INTRODUCTION
The growth of communication overheads is a limiting fac-

tor to attaining petaflop performance for several applica-
tions that run on large-scale systems [5]. Applications like
PDE solvers on structured and unstructured grids, multi-
scale and multi-model codes and unstructured graph pro-
cessing, which are typically strong-scaled, will retain their
growing communication overheads on exascale systems, un-
less there is a radical shift in the programming paradigm.
Therefore, to avoid the dissipation of valuable computing
resources and power on application that do not scale up,
there is an imperative need for ahead-of-execution prediction
of the expected application performance and scalability, as
well as for effective decision-making on resource allocation
and utilization.
Typically, HPC applications share their execution time

between computation and communication phases. Compu-
tation scalability is easy to predict, through inspection of
their performance on similar platforms or simulation, as it
takes place on a contained environment, namely several iden-
tical, isolated multi-core platforms and/or accelerators. On
the other hand, predicting communication scalability, es-
pecially when it comes to projecting on more cores, poses
many challenges, which stem from the distributed, massive

and shared nature of the interconnection network on large-
scale systems. In practice, the users have barely any means
to predict the scalability of their applications. It is common
among supercomputer users to overestimate the potential
ability of their application to scale and request excessive
numbers of cores from the system to run their applications.
As a result, users undergo long waiting hours and consume
their corehour budget on non-scalable configurations. At the
same time, they dissipate valuable compute resources.

Analytical models for communication time, such as [1],
make a simplified assumption of a linear dependence of com-
munication performance on the roundtrip time and thus
fail to capture complex communication effects that arise on
large scale. An empirical approach by Bhatele et al. in [3]
achieves projection of communication performance on large
scale on BlueGene/Q with the assistance of network perfor-
mance counters. Shudler et al. in [7] build linear models to
project the scalability of applications to exascale.

In this paper, we show how empirical performance models
for communication time can enable a user to make opti-
mal decisions on the execution configuration of her appli-
cation, taking into account communication scalability. We
use our methodology, described in [6], to construct predic-
tive models for communication time on two supercomput-
ers, Vilje and Piz Daint. Using these predictive models, we
explore the ability to predict optimal node and core con-
figurations, to find the number of cores and the configura-
tion that result in the lowest execution time, before scal-
ability breaks, and to select configurations that allow the
user to save up on her corehour budget, along with system
resources. We use a mini-application, a 3D-Jacobian relax-
ation, with a typical 3D-stencil communication pattern, to
evaluate the predictive ability of our models in the aforemen-
tioned decision-making scenarios. Our experimental results
show remarkable accuracy in predicting critical configura-
tions, even when projecting to 4 times on Vilje and 8 times
on Piz Daint more cores than those with which the models
have been trained.

2. BACKGROUND

2.1 Communication performance issues
Interconnection networks for large-scale systems come with

various architectures, topologies, configurations and system
software, constituting a complex entity. Large-scale applica-
tions are mapped onto these complex systems and produce
a communication configuration which can vary dramatically
in between different executions. In the following paragraphs,



we discuss the effects of the system and the application on
communication performance.
Network topologies are a critical design parameter of in-

terconnection networks. The topology per se defines the
bisection bandwidth and the path diversity between a source
and a destination, determines the number of nodes attached
to switches and classifies networks as direct and indirect.
Besides the topology, network technology defines several ar-
chitecture - related parameters, such as the latency and the
link bandwidth. Other critical parameters for communication
performance source from the network interface architecture.
Parallel applications request a set of resources like number

of cores/nodes, memory size, etc. Schedulers allocate a sys-
tem partition based on the current resource allocation and
certain optimization targets (either system- or application-
centric), producing a specific process mapping of the ap-
plication on the system. Depending on the topology and
scheduler decisions, the allocation shape can vary drasti-
cally. Alternate process mappings affect the dilation, the
link congestion [4], the mixture of intranode and internode
communication, the length of network queues and buffers on
nodes and switches [3]. Subsequent application executions
do not maintain the process mapping, a fact that often leads
to significantly diverse mappings and communication times.
Implementation details of the communication library (typi-
cally MPI) also impact communication performance. Proto-
col and transport selection, as well as algorithmic or system-
level optimizations, may differentiate communication behav-
ior between MPI implementations. OS noise and interfer-
ence from nearby jobs have also been reported to degrade
the communication performance of parallel applications [2].
At the application level, there exists a number of features

that constitute its communication profile and greatly affect
its communication time. Application processes may commu-
nicate irregularly or in synchronized communication phases.
In this work we focus on applications that communicate in
distinct phases as is a typical case for large classes of scien-
tific applications. The total data volume exchanged within
each phase and the communication pattern (point-to-point
vs collective) are critical factors. The number and size of
messages per process and whether these features remain con-
stant across all processes are also of high importance.
Every application execution on a target system creates

a unique communication configuration involving architec-
tural, system-level and application-level parameters as dis-
cussed in the previous paragraphs. As multiple streams
of data of an application flow through the interconnection
network during its communication phase, network resources
are shared among the participating processes and all kinds
of contention effects may occur. In addition to link shar-
ing, the switches that participate in communication are also
stressed. High dilation may also induce contention, or occa-
sionally add up positively to the path diversity. In summary,
an accurate performance model for the communication of
parallel applications requires an aggregation of all the afore-
mentioned metrics, features and effects.

2.2 Building machine-learning models for
communication time

In our methodology for the construction of predictive mod-
els for communication time, we attempt to abstract the com-
plex effects of communication on large-scale systems and
combine them in simple and accurate models, built with

machine-learning techniques. In particular, we define quan-
tifiable, descriptive metrics for communication, which we
draw from the application communication profile and the
process mapping. We use metrics that denote the amount of
data and messages that are communicated between the pro-
cesses of an application and metrics that describe the shape
of the allocation upon which the processes are mapped. To
abstract the complex effects of communication at scale, we
utilize a single benchmark to correlate these metrics with
communication time. Based on the benchmark results, we
identify relationships between the metrics and communica-
tion time, i.e. the target variable of our predictive models,
and construct multiple variable regression models for com-
munication time, which are trained with the data collected
through benchmarking.

3. COMMUNICATION PERFORMANCE
MODELS FOR LARGE-SCALE SYSTEMS

In this section, we describe the two systems for which we
construct communication performance models. We provide
a brief description of our metrics for communication perfor-
mance modeling, present our models for predicting commu-
nication time on Vilje and follow the methodology described
in [6] to construct models for communication time on Piz
Daint. We evaluate the predictive ability of the models on
a 3D-Jacobian relaxation application, with a 3D-halo com-
munication pattern that often appears in HPC applications.

3.1 Target Systems
The Vilje supercomputer at NTNU is an SGI system of

1404 Intel Xeon-E5 dual eight-core nodes. It is intercon-
nected with InfiniBand FDR in an enhanced hypercube topol-
ogy, with redundant links at the lower dimensions of the hy-
percube. The nodes of Vilje are organized as following: the
basic component of the topology is the IRU. Each IRU hosts
18 nodes and two InfiniBand switches and forms the first di-
mension of the hypercube. Four IRUs form a single rack.
The total number of racks of Vilje is 19.5. The default MPI
library for Vilje is a component of the SGI Message Passing
Toolkit. The Piz Daint supercomputer at CSCS is a Cray
XC30 system, consisting of 5752 nodes equipped with Intel
Xeon-E5 eight-core nodes and NVIDIA GPUs. The inter-
connect is the proprietary Cray Aries. The nodes of Piz
Daint are organized in a dragonfly topology, as following:
the topology forms 14 groups, which are all-to-all connected;
each group contains six chassis, each containing sixteen Cray
Aries SoCs. Four nodes are connected on a Cray Aries SoC.
All nodes within a group are all-to-all connected. The de-
fault MPI setup for Piz Daint is Cray MPICH.

3.2 Descriptive metrics for communication
To model communication time, we utilize metrics related

to the application communication profile and its mapping
on the underlying system. First, we define metrics that are
purely derived from the application communication profile.
These are the average message size S, the average number
of messages M and the process traffic PT, i.e. the traffic
(in bytes) that is created by each process. We also define
two metrics for the allocation size, the number of nodes N
and the number of processes per node PPN. Once the pro-
cesses of an application are mapped on the given allocation,
there is a certain amount of data in bytes and messages that



Table 1: Communication Performance Models on Vilje: Additive terms and their coefficients
Area Ia Area Ib Area II

S ≤ 4kB and NT ≤ 128kB S > 4kB and NT ≤ 128kB NT > 128kB
Terms Coefficients Terms Coefficients Terms Coefficients

Intercept 6.6111× 10−6 Intercept 0 Intercept 0

PPN ×NT 5.8226× 10−12 S 7.7787× 10−10 S −3.5128× 10−11

S ×NT −1.42× 10−13 SW/R 1.2193× 10−06 PPN × S −1.3962× 10−11

R×NT −5.967× 10−11 S × SW/R −6.1059× 10−11 SW × S 1.8077× 10−11

PPN ×NI 2.1315× 10−08 NT 2.8278× 10−10 PPN × S × SW −1.0744× 10−12

S ×NI 1.0384× 10−09 V 1.2398× 10−12 NT 2.5808× 10−10

R×NI 8.1344× 10−08 S ×NT −5.7408× 10−15 PPN ×NT −3.8401× 10−12

PPN × S ×NT −5.9903× 10−16 SW/R×NT 2.6589× 10−11 S ×NT 4.5466× 10−18

PPN ×R×NT 1.2994× 10−12 S × V 3.6211× 10−18 SW ×NT 1.3029× 10−11

S ×R×NT 1.2228× 10−14 SW/R× V −1.8116× 10−13 PPN × S ×NT 1.5495× 10−19

PPN ×R×NI −4.7418× 10−09 S × SW/R×NT 6.9513× 10−16 PPN × SW ×NT 3.5872× 10−13

PPN × S ×R×NT −3.7129× 10−16 S × SW/R× V 2.3784× 10−18 S × SW ×NT −1.6864× 10−19

PPN × S × SW ×NT 2.1983× 10−20

is injected from the node to the network. We define and
use two metrics, the node traffic NT, i.e. the data injected
from a node to the network in bytes and node injection NI,
i.e. the number of messages injected from a node to the
network. Note that, the two metrics exclude the amount of
data that is exchanged intra-node, i.e. between processes
that reside on the same node. We also define the total
communication volume V and the total injected messages
VI, which are the amount of data in bytes and messages
respectively exchanged over the network during an applica-
tion communication phase. All the aforementioned metrics
are architecture-agnostic and utilized without modifications
across any system for the purpose of modeling communica-
tion time. In addition, we define and utilize a few metrics
that describe the allocation shape, which are specific to each
architecture. We describe these metrics and how they spec-
ify for each system in the following sections.

3.3 Modeling communication on Vilje
To model communication on Vilje, we define three addi-

tional metrics for the allocation shape, based on the charac-
teristics of the architecture and topology of the system. The
metrics are the number of switches SW and racks R in an
allocation for an application execution and their ratio, i.e.
switches per rack SW/R. We use these metrics as indica-
tors of possible hot-spots, the dilation of the allocation and
the allocation density.
Following the methodology we describe in [6], we collected

a training set for the modeling process by executing a bench-
mark on Vilje for various allocations, ranging from 8 up to
128 nodes, 1 up to 16 processes per node, 1 up to 4 mes-
sages per processes and messages of length from 64B up to
16MB. All the configurations were executed twice, to collect
diverse values for the number of switches and racks in the
allocation and their ratio. Based on this training set, we
examined correlations and scatterplots between the defined
metrics and communication time and decided to parame-
ter space in three areas. First, we split according to the
node traffic into Area I (NT ≤ 128kB) and Area II (NT
> 128kB). Then we split Area I according to the message
size into Area Ia (S ≤ 4kB) and Area Ib (S > 4kB). For
each of the three areas, we selected the form of the model,
making use of our observations on the relationships between
our metrics and communication time and we built a robust
multiple variable regression model, using the class Linear-
Model, available in Matlab R2013a. The model terms and

Table 3: Communication patterns and configura-
tions used for evaluation of prediction accuracy

Vilje Piz Daint
N 16-512 16-1024

PPN 1-16 1-8

Domain Size 1283, 2563, 5123, 10243, 20483

Iterations 256
#executions 3

their coefficients for each area are presented in Table 1.

3.4 Modeling communication on Piz Daint
Extending our work in [6], we apply the same methodol-

ogy to model communication time on Piz Daint. As on Vilje,
to capture the properties of the dragonfly topology of Piz
Daint, we define metrics for the allocation shape. Thes met-
rics are the number of Aries SoCsA, chassisC and groupsG
in the allocation, as well as their ratios, namely the number
of nodes per Aries SoCs A/C, Aries SoCs per chassis A/C
and chassis per group C/G. Similarly to Vilje, we use these
metrics as indicators of hot-spots, dilation, path diversity
and allocation density.

To collect the training set, we executed our benchmark
on Piz Daint for various allocations of 8 up to 128 nodes,
1 up to 8 processes per node, 1 up to 8 messages per pro-
cess and message sizes ranging from 64B up to 16MB. The
benchmark was executed twice, on different allocations each
time, to collect diverse values for the number of Aries SoCs,
chassis and groups and their ratios. After inspecting scat-
terplots of the various metrics against communication time,
we divided our training set in three areas, where training set
points exhibit common relationships to our metrics. First,
we split our training set according to the message size into
Area I (S ≤ 8kB) and Area II (S > 8kB). Then, we split
Area I into Areas Ia (PT ≤ 8kB) and Ib (PT > 8kB). For
each of the three areas, we built a robust multiple variable
regression model on Matlab R2013a. The model terms and
their coefficients for each area are presented in Table 2.

3.5 Evaluating prediction accuracy
To evaluate the prediction accuracy of our models for com-

munication time, we use a 3D-Jacobian relaxation (here-
after denoted as Jacobi3D) application, which exposes a
3D-halo communication pattern, where 3D-subdomains ex-
change 2D-faces with their six neighboring processes. We



Table 2: Communication Performance Models on Piz Daint: Additive terms and their coefficients
Area Ia Area Ib Area II

S ≤ 8kB and PT ≤ 8kB S ≤ 8kB and PT > 8kB S > 8kB
Terms Coefficients Terms Coefficients Terms Coefficients

Intercept 1.816× 10−5 Intercept 2.0604× 10−5 Intercept 7.0526× 10−5

NI 5.0144× 10−8 PPN −1.7625× 10−5 PPN −2.7899× 10−5

N/A −2.927× 10−6 NT 1.9318× 10−10 NT 2.2196× 10−10

NI ×N/A 3.2788× 10−8 NI 2.7981× 10−7 NT × PPN 1.4061× 10−11

C −6.4923× 10−7 A/C 7.5479× 10−7

NI × C 1.3872× 10−8 PPN ×NT 5.3778× 10−13

N/A× C 2.9738× 10−7 PPN ×NI −1.9800× 10−8

NI × C ×N/A −1.8538× 10−9 NT ×A/C 2.7822× 10−12

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Communication Time - MEASURED (s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

C
om

m
un

ic
at
io
n 
Ti
m
e 
- P

R
ED

IC
TE

D
 (s
)

PREDICTIONS
+/-25% ERROR
+/-50% ERROR

0 1 2 3 4 5 6 7 8
Communication Time - MEASURED (s)

0

1

2

3

4

5

6

7

8

C
om

m
un

ic
at
io
n 
Ti
m
e 
- P

R
ED

IC
TE

D
 (s
)

PREDICTIONS
+/-25% ERROR
+/-50% ERROR

Figure 1: Communication time predictions on Vilje

0.00 0.02 0.04 0.06 0.08 0.10
Communication Time - MEASURED (s)

0.00

0.02

0.04

0.06

0.08

0.10

C
om

m
un

ic
at

io
n 

Ti
m

e 
- P

R
ED

IC
TE

D
 (s

)

PREDICTIONS
+/-25% ERROR
+/-50% ERROR

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Communication Time - MEASURED (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
om

m
un

ic
at

io
n 

Ti
m

e 
- P

R
ED

IC
TE

D
 (s

)

PREDICTIONS
+/-25% ERROR
+/-50% ERROR

Figure 2: Communication time predictions on Piz
Daint

executed the application on the two systems, Vilje and Piz
Daint, for various problem sizes, on multiple nodes and
cores configurations. Additionally, we collected measure-
ments from multiple executions which give diverse allocation
shapes. We provide a detailed description of the collected
measurements in Table 3. We predict the communication
time of the application, using the models presented in the
previous section for Vilje and Piz Daint, for all the afore-
mentioned configurations. We note that, while our models
have been trained with configurations up to 2048 cores on
Vilje and 1024 cores on Piz Daint, our evaluation set includes
configurations on 8192 cores on Vilje and Piz Daint, namely
4 times and 8 times higher numbers of cores than those in-
cluded in the training set. In this way, we also evaluate the
ability of our models to project communication scalability.
Figures 1 and 2 show the scatterplots for the predicted

communication time of Jacobi3D, compared to the mea-
sured communication time, for all five problem sizes and all

nodes/processes per node configurations, as well as for all
three executions on different allocations, on Vilje and Piz
Daint respectively. On Vilje, 41.3% of our predictions lie
within a ±25% error margin and 68.2% lie within a ±50% er-
ror margin. We note, however, that, on Vilje, our models do
not capture some communication effects, as we observe a few
extreme underpredictions and overpredictions. Underpre-
dictions, in their majority, correspond to configurations of
high node (>128) and core counts (>1024) and small prob-
lem sizes, i.e. where many messages of extremely small sizes
are exchanged over the network. Such configurations are not
part of the training set. Overpredictions also correspond to
configurations with high core counts (>1024), beyond our
training set, on large problem sizes, where possibly the ef-
fect of the message size is overestimated. Both behaviors
can be interpreted as an inability of the models to project
on higher core counts than those included in the training set.
On the other hand, our models for Piz Daint exhibit remark-
able accuracy consistently in all configurations and project
well to higher core counts than those included in the train-
ing set; 68.8% of predictions lie within a ±25% error margin
and 92.6% lie exhibit errors within ±50%. Some observed
underpredictions cannot be grouped with some character-
istic and thus we argue that they are outlier cases, where
communication time is higher than expected due to system
noise or interference from other applications.

4. COMMUNICATION-AWARE
DECISION-MAKING

The ability to predict the execution time of parallel ap-
plications is valuable for decision-making regarding resource
allocation and utilization. More importantly, the utility of a
prediction model is evaluated by its ability to predict critical
points in various decision-making scenarios. We examine a
few such scenarios, where our prediction models could prove
useful, and test the prediction accuracy.

One problem for supercomputer users is to find the con-
figuration of nodes and processes per node that minimizes
execution time. A user can acquire a number of cores in
multiple possible pairs of nodes and processes per node, but
has barely any means to predict which configuration results
to the lower execution time. This prediction would guide
the users to the configurations that minimize execution time
and help them avoid configurations that do not scale well.
It would also potentially save resources, as the users could
release cores of a node or use them for a different purpose,
e.g. to improve computation performance only, with a hy-
brid MPI/OpenMP implementation.

To address this problem, we formulate it as a problem of



0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Ti

m
e 

(s
)

16 32 64 128 25632 64 128 256 51264 128 256 512 1024128 256 512 1024 2048256 512 1024 2048 4096512 1024 2048 4096 8192
Cores

MEASURED-Pareto Front
PREDICTED-Pareto Front
MEASURED
PREDICTED

(a) Pareto front for Jacobi3D-1283

0.1

1

10

100

Ti
m

e 
(s

)

16 32 64 128 25632 64 128 256 51264 128 256 512 1024128 256 512 1024 2048256 512 1024 2048 4096512 1024 2048 4096 8192
Cores

MEASURED-Pareto Front
PREDICTED-Pareto Front
MEASURED
PREDICTED

(b) Pareto front for Jacobi3D-5123

Figure 3: Optimal configurations for Jacobi3D on
Vilje

minimizing simultaneously the number of cores, in different
configurations, and the execution time. This set is known as
the Pareto front and marks an optimal set of choices, in the
sense that the user is neither better nor worse off by making
either of these choices. We assume that there exists a perfect
predictor for the computation time of Jacobi3D (in practice,
we use the observed computation time) and utilize our pre-
diction models to estimate communication time on the two
systems, Vilje and Piz Daint. We compute the Pareto fronts
for the execution time and cores using our predictions and
compare against the Pareto fronts for the observed execution
time, for each problem size of Jacobi3D.
Figures 3 and 4 show two examples of the Pareto fronts on

Vilje and Piz Daint respectively, for various problem sizes.
In all cases, the predicted Pareto front is close (or identical)
to the real Pareto front, i.e. our models are capable of de-
tecting those configurations that minimize execution time.
In addition, in the cases we present, scalability breaks at a
certain number of cores, as indicated by the points constitut-
ing the real Pareto front. The predicted Pareto fronts detect
the scalability breaks with remarkable accuracy. Tables 4
and 5 summarize the results of the Pareto front points for
measured and predicted values of execution time and cores.
We denote as “Matches” the common Pareto front points
for the two Pareto fronts, which also correspond to identi-
cal configurations. On both systems, the Pareto fronts for
measured and predicted points match perfectly in 2 out of
the 5 cases, while at most 3 points are mispredicted for the

0.00

0.02

0.04

0.06

0.08

0.10

Ti
m

e 
(s

)

16 32 64 12832 64 128 25664 128 256 512128 256 512 1024256 512 1024 2048512 1024 2048 40961024 2048 4096 8192
Cores

MEASURED-Pareto Front
PREDICTED-Pareto Front
MEASURED
PREDICTED

(a) Pareto front for Jacobi3D-1283

0.1

1

10

100

Ti
m

e 
(s

)

16 32 64 12832 64 128 25664 128 256 512128 256 512 1024256 512 1024 2048512 1024 2048 40961024 2048 4096 8192
Cores

MEASURED-Pareto Front
PREDICTED-Pareto Front
MEASURED
PREDICTED

(b) Pareto front for Jacobi3D-10243

Figure 4: Optimal configurations for Jacobi3D on
Piz Daint

Table 4: Pareto Fronts for the Cores/Execution
Time Minimization on Vilje

Jacobi3D Pareto Points
Problem Size Measured Predicted Matches

1283 7 7 5

2563 7 7 6

5123 9 9 9

10243 10 10 7

20483 10 10 10

Table 5: Pareto Fronts for the Cores/Execution
Time Minimization on Piz Daint

Jacobi3D Pareto Points
Problem Size Measured Predicted Matches

1283 7 7 4

2563 10 10 8

5123 10 10 9

10243 9 9 9

20483 9 9 9

remaining 3 cases.
The Pareto fronts for cores and execution time offer ad-

ditional interesting information, which can be deployed for
the optimization of resource utilization. First, as we men-
tioned before, they identify scalability breaks. If, for a given
number of cores, no configuration is included in the Pareto
front, then the application no longer scales after this num-
ber of cores. Also, the point with the highest core count
included in the Pareto front corresponds to the configura-
tion that leads to the minimum execution time. The opti-



Table 6: Minimum Time Configuration Prediction
on Vilje
Problem Size Measured(NxPPN) Predicted(NxPPN) Result

1283 512× 2 512× 2 True

2563 512× 2 512× 2 True

5123 512× 8 512× 8 True

10243 512× 16 512× 16 True

20483 512× 16 512× 16 True

Table 7: Minimum Time Configuration Prediction
on Piz Daint
Problem Size Measured(NxPPN) Predicted(NxPPN) Result

1283 128× 8 128× 8 True

2563 1024× 8 1024× 8 True

5123 1024× 8 1024× 8 True

10243 1024× 4 1024× 4 True

20483 1024× 4 1024× 4 True

Table 8: Corehours minimization on Vilje
Minimum corehours configurations Corehours

Problem Size Measured(NxPPN) Predicted(NxPPN) Result Measured Predicted

1283 32× 1 32× 1 True 0.001524 0.001535

2563 16× 1 16× 1 True 0.0115 0.0113

5123 16× 1 16× 1 True 0.0907 0.0905

10243 32× 1 32× 1 True 0.7168 0.7161

20483 32× 1 32× 1 True 5.724 5.723

Table 9: Corehours minimization on Piz Daint
Minimum corehours configurations Corehours

Problem Size Measured(NxPPN) Predicted(NxPPN) Result Measured Predicted

1283 16× 1 32× 1 False 0.000364 0.000375

2563 32× 1 32× 1 True 0.00243 0.00240

5123 256× 1 256× 1 True 0.02035 0.02061

10243 1024× 1 1024× 1 True 0.1659 0.1647

20483 512× 1 512× 1 True 1.3716 1.3634

mality condition is the same for both problems. Finally, all
points at the Pareto front minimize the core-hour consump-
tion by the user for the application for a given number of
cores. Therefore, one point at the Pareto front denotes the
minimal consumption of corehours.
Tables 6 and 7 show the predicted and actual minimum

time configurations for each tested problem size of Jacobi3D
on Vilje and Piz Daint. For all cases, the minimum time
configuration is accurately predicted on both systems. We
should note that scalability breaks are also accurately de-
tected when they occur, that is in 3 cases on Vilje (for prob-
lem sizes 1283, 2563 and 5123) and in 3 cases on Piz Daint
(for problem sizes 1283, 10243 and 20483). Tables 8 and 9
show the predicted and actual minimum corehours and the
configurations where they occur. There is a single mismatch
on Piz Daint for problem size 1283, where however the error
in corehours is 3%.

5. CONCLUSIONS AND FUTURE WORK
In this work, we explored the potential of predictive per-

formance models for communication time of HPC applica-
tions in decision-making scenarios, regarding optimal re-
source allocation and utilization by the user. Following a
machine-learning approach for communication performance
modeling, we constructed predictive models for communica-
tion time on two large supercomputers, Vilje and Piz Daint.
We evaluated the overall predictive ability of the models on
a representative HPC mini-application, a 3D-Jacobian re-
laxation. We used our predictions for communication, while
assuming a perfect predictor for computation, to detect op-
timal execution configurations for this application, using

Pareto fronts for the execution time and cores. Our ex-
perimental results show great accuracy in detecting optimal
configurations, perfect accuracy in predicting the number of
cores and the configuration that results in the lowest exe-
cution time and possible scalability breaks. Using the same
Pareto fronts, we also detected the configurations that re-
sult in the lowest possible corehour consumption, that would
allow the users to save up on their corehour budgets.

In future work, we intend to explore advanced machine-
learning techniques for the automation of the modeling pro-
cess and we will work towards improving the overall accu-
racy of our predictive models. We also aim at modeling
collective and/or irregular communication. On optimizing
resource utilization, we target to explore decision-making
scenarios that arise at the schedulers/resource managers of
large-scale computing systems.

6. ACKNOWLEDGEMENT
This research was supported in part with computational

resources at the Norwegian University of Science and Tech-
nology provided by NOTUR (http://www.notur.no) and in
part by a grant from the Swiss National Supercomputing
Center under project ID g83. Nikela Papadopoulou has re-
ceived funding from IKY fellowships of excellence for post-
graduate studies in Greece-SIEMENS program.

7. REFERENCES
[1] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and

C. Scheiman. LogGP: incorporating long messages into
the LogP model—one step closer towards a realistic
model for parallel computation. In Proceedings of the
seventh annual ACM symposium on Parallel algorithms
and architectures, pages 95–105. ACM, 1995.

[2] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs.
There goes the neighborhood: performance degradation
due to nearby jobs. In Proceedings of SC13:
International Conference for High Performance
Computing, Networking, Storage and Analysis, page 41.
ACM, 2013.

[3] A. Bhatele, A. R. Titus, J. J. Thiagarajan, N. Jain,
T. Gamblin, P.-T. Bremer, M. Schulz, and L. V. Kale.
Identifying the culprits behind network congestion.

[4] T. Hoefler and M. Snir. Generic topology mapping
strategies for large-scale parallel architectures. In
Proceedings of the international conference on
Supercomputing, pages 75–84. ACM, 2011.

[5] P. Kogge, K. Bergman, S. Borkar, D. Campbell,
W. Carson, W. Dally, M. Denneau, P. Franzon,
W. Harrod, K. Hill, et al. Exascale computing study:
Technology challenges in achieving exascale systems.
2008.

[6] N. Papadopoulou, G. Goumas, and N. Koziris. A
machine-learning approach for communication
prediction of large-scale applications. In 2015 IEEE
International Conference on Cluster Computing, pages
120–123. IEEE, 2015.

[7] S. Shudler, A. Calotoiu, T. Hoefler, A. Strube, and
F. Wolf. Exascaling your library: Will your
implementation meet your expectations? In Proceedings
of the 29th ACM on International Conference on
Supercomputing, pages 165–175. ACM, 2015.


