
DICER: Diligent Cache Partitioning for Efficient Workload
Consolidation

Konstantinos Nikas
Computing Systems Laboratory
National Technical University of

Athens
knikas@cslab.ece.ntua.gr

Nikela Papadopoulou
Computing Systems Laboratory
National Technical University of

Athens
nikela@cslab.ece.ntua.gr

Dimitra Giantsidi
Computing Systems Laboratory
National Technical University of

Athens
dgiantsidi@cslab.ece.ntua.gr

Vasileios Karakostas
Computing Systems Laboratory
National Technical University of

Athens
vkarakos@cslab.ece.ntua.gr

Georgios Goumas
Computing Systems Laboratory
National Technical University of

Athens
goumas@cslab.ece.ntua.gr

Nectarios Koziris
Computing Systems Laboratory
National Technical University of

Athens
nkoziris@cslab.ece.ntua.gr

ABSTRACT
Workload consolidation has been shown to achieve improved re-
source utilisation in modern datacentres. In this paper we focus
on the extended problem of allocating resources when co-locating
High-Priority (HP) and Best-Effort (BE) applications. Current ap-
proaches either neglect this prioritisation and focus on maximis-
ing the utilisation of the server or favour HP execution resulting
to severe performance degradation for BEs. We propose DICER,
a novel, practical, dynamic cache partitioning scheme that adapts
the LLC allocation to the needs of the HP and assigns spare cache
resources to the BEs. Our evaluation reveals that DICER success-
fully increases the system’s utilisation, while at the same time min-
imising the impact of co-location on HP’s performance.
ACM Reference Format:
Konstantinos Nikas, Nikela Papadopoulou, Dimitra Giantsidi, Vasileios Ka-
rakostas, Georgios Goumas, and Nectarios Koziris. 2019. DICER: Diligent
Cache Partitioning for Efficient Workload Consolidation. In 48th Interna-
tional Conference on Parallel Processing (ICPP 2019), August 5–8, 2019, Ky-
oto, Japan. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3337821.3337891

1 INTRODUCTION
Multicore systems are the norm for high performance servers that
are widely used in both cloud datacentres and supercomputers.
These systems encapsulate several cores sharing several resources
that are critical for application performance, such as the last-level
cache (LLC), memory links, I/O controllers, etc. However, sharing
resources on such systems without any regulation can be damag-
ing; when multiple applications execute simultaneously, resource
contention can lead to destructive interference, unfairness or star-
vation, and thus reduced and unpredictable performance.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ICPP 2019, August 5–8, 2019, Kyoto, Japan
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6295-5/19/08…$15.00
https://doi.org/10.1145/3337821.3337891

Past work has focused intensely on the mitigation of this impact
on performance. The proposed resource managers follow two or-
thogonal approaches. The first one investigates ways to efficiently
partition the shared resources among the concurrently running ap-
plications [12, 18, 20, 21, 33, 34, 37, 41, 46]. The second approach
extends system schedulers that operate inside the server [5, 15, 16,
22, 24, 27, 32, 42, 50] to account for contention and identify appro-
priate co-schedules that mitigate it and thus maximise the overall
throughput or maintain performance fairness.

However, all these resource managers typically assume that co-
located applications are equally important. Nevertheless, modern
cloud datacentre operation is based on executing workloads that
have different Quality of Service (QoS) (or Service Level Objective
- SLO) requirements. In addition, these requirements can be ex-
pressed by different metrics, such as throughput [10], response la-
tency [30], operations per second [11], and completion deadline [49],
that ultimately lead to different application classes [25, 29, 49] and
billing policies [14]. Therefore, resource managers need to adapt
to prioritisation; they need to consider the performance of critical
applications together with total system utilisation and throughput.

To address this, recent research efforts [7, 8, 10, 19, 29–31, 43, 49]
have focused on an extended resource allocation problem: a High
Priority (HP) application is co-located with a number of Best Effort
(BE) applications, and the goal is to safeguard the QoS of HP while
maximising the throughput of BEs. These schemes essentially at-
tempt to maximise the utilisation of servers, accelerators, or ware-
houses through workload consolidation while ensuring or achiev-
ing a required QoS level for HP applications.

In this paper we work on the same extended resource allocation
problem of consolidating an HP and BEs on the same server. We
differentiate though from previous works, as our goal is to provide
a practical scheme that operates transparently to the running appli-
cations, i.e. without any assumption on the information provided
by the application itself [29] as well as any profiling information
either pre-existing [42, 49] or extracted by accompanying profile-
inferring tools [30]. This way, our scheme will be able to operate
“out-of-the-box” in all typical execution platforms.

To cope with the matter at issue, one can follow a naive, conser-
vative approach and avoid workload consolidation, safeguarding
the performance of the HP application; this is clearly a suboptimal

https://doi.org/10.1145/3337821.3337891
https://doi.org/10.1145/3337821.3337891
https://doi.org/10.1145/3337821.3337891

ICPP 2019, August 5–8, 2019, Kyoto, Japan Nikas and Papadopoulou, et al.

approach in terms of effective utilisation of resources.The other ex-
treme approach would be to disregard the priorities of applications
and co-locate them within the same server in an unmanaged way,
taking though the risk of severely harming the HP application.

Amore elaborate approach can leverage the recently introduced
support formanaging shared hardware resources onmodern servers.
Intel has released as part of its latest Xeon processors the Intel Re-
source Director Technology (RDT) [4], a framework that monitors
and manages the shared last-level cache (LLC) and memory band-
width. Similarly, Cavium has added support for managing the LLC
in the ThunderX processors [1, 44]. Such technologies provide a
straightforward mechanism to address our problem: the cache can
be taken over almost entirely by the HP application leaving only a
minimum fraction assigned to the BE applications.

We have experimented with both straightforward cache alloca-
tion policies, namely Unmanaged (UM) and Cache Takeover (CT),
andmade three observations that drive our approach. First, inmany
multiprogrammed workloads, when allocated exclusively a por-
tion of the cache, the HP application is able to achieve similar per-
formance to when running alone in the system occupying the en-
tire cache. Hence, there is ample opportunity for dynamically co-
locating HP and BEs, increasing the platform’s utilisation. Second,
there exist multiprogrammed workloads for which the HP applica-
tion performs better when allocated exclusively less cache space.
While this seems to be counter-intuitive, it happens because the
containment of BEs in minor portion of the cache introduces band-
width saturation on the memory link that in turn impacts the HP
application. Third, strict cache allocation policies that favour the
HP application performance result in waste of resources, hurting
system utilisation due to their unfairness. On the other hand, leav-
ing resources unmanaged may increase the system’s utilisation, at
the expense though of frequently disrespecting the QoS require-
ments of the HP application.

We propose DICER, a dynamic cache partitioning scheme that
targets both system utilisation increase and HP performance close
to that of isolated execution, i.e. respect the HP performance re-
quirements. This is achieved by diligently managing the LLC allo-
cations of the co-located applications, trying to alleviate the effects
of contention. We implement DICER based on Intel’s RTD support
for monitoring and partitioning LLC occupancy and monitoring
memory bandwidth.

Our evaluation results on multiprogrammed workloads from
the SPEC CPU 2006 [17] and Parsec 3.0 [6] suites show that DICER
enables the HP application to achieve an SLO of 80% for more than
90% of our workloads and an SLO of 90% for 74% of our workloads;
at the same time DICER maintains the effective system utilisation
of a full server to 60% on average. Compared to CT, the static
cache allocation policy that conservatively favours the HP appli-
cation, DICER achieves similar or higher conformance to various
HP SLOs, especially as more BEs are co-located on the same server.
At the same time, by dynamically assigning spare cache space to
BEs, DICER achieves in most cases comparable effective utilisation
to UM, the unmanaged policy that does not isolate the HP applica-
tion and enforces no priorities on the consolidated workloads. Fi-
nally, our evaluation of DICER on a combined index incorporating
both SLO conformance and effective system utilisation, shows that
DICER outperforms all other schemes and can benefit providers

trying to maximise system utilisation while maintaining their Ser-
vice Level Agreements (SLAs).

In summary, the main contributions of this paper are:

• We perform a detailed analysis of the impact of simple co-
location policies on the performance of applications and the
utilisation of the server (Section 2).

• Based on our analysis, we design and implement DICER,
a novel, practical, dynamic cache partitioning scheme that
adapts to the actual cache requirements of the HP applica-
tion and assigns any spare cache to BEs (Section 3).

• We evaluate DICER using various multiprogrammed work-
loads, and show that it is able to maximise the server’s util-
isation while minimising the impact of co-location on HP’s
performance (Section 4).

2 WORKLOAD CONSOLIDATION
2.1 Execution Scenario
Today, datacentres and supercomputers typically avoid consolidat-
ing multiple applications on the same multicore server [11, 43, 47].
This co-location could compromise the performance of applications,
due to contention for the shared resources of the server, making
providers unable to guarantee Quality-of-Service (QoS). On the
other hand though, workload consolidation would allow providers
to maximise server utilisation, in terms of core utilisation and sys-
tem throughput.

To render co-location efficient and practical, we study the ex-
tended resource allocation problem of executing concurrentlyHigh
Priority (HP) and Best Effort (BE) applications. We focus on a mul-
tiprogrammed scenario that has been considered by prior stud-
ies [19, 29] as well: one HP application executes on one core of
the server, while multiple instances of another application run on
the remaining cores and are considered as BE workloads. However,
in contrast to other works that rely on a known target for QoS and
focus on guaranteeing QoS at the expense of utilisation, we focus
on minimising the impact of co-location on HP while maximising
the server utilisation.

In this section we present two simple co-location policies and
analyse their impact on the performance of HP and the utilisation
of the server. The findings of this analysis are then used to drive
the design of DICER.

2.2 Baseline Co-location Policies
Unmanaged (UM). In this scheme, all applications are executed

in a typical fashion, i.e., there is no control on sharing resources
or any QoS enforcement. UM is a contention-unaware co-location
policy; all HP and BEs experience full contention on the LLC and
memory bandwidth.

Cache-Takeover (CT). On the contrary, “Cache-Takeover” (CT)
is a co-location scheme that tries to mitigate interference in an
intuitive, yet conservative, way. CT controls the LLC space that
each application receives and conservatively allocates the maxi-
mum possible isolated portion of the LLC to HP, leaving the mini-
mum possible LLC portion for all the BEs.

DICER: Diligent Cache Partitioning for Efficient Workload Consolidation ICPP 2019, August 5–8, 2019, Kyoto, Japan

1.0 1.1 1.2 1.3 1.5 1.7 2.0 3.0 4.0 5.0

HP Application Slowdown

0

20

40

60

80

100

M
u
lt
ip
ro
g
ra
m
m
e
d
 W
o
rk
lo
a
d
s
(%
)

UM

CT

Figure 1: Cumulative distribution of HP’s slowdown when
running together with 9 BEs.

2.3 Impact on HP Performance
To assess the impact of the baseline policies on HP’s performance,
we execute 3481 multiprogrammed workloads in total, composed
of one HP and 9 BEs (Section 4.1 provides details regarding our
methodology and experimentation platform).We calculate the slow-
down HP suffers with respect to its execution time when run alone
on the system and plot in Figure 1 its cumulative distribution.

For UM, we observe that for the majority of the workloads (64%)
HP runs around 1.1× slower compared to running alone, while its
performance is unaffected by the co-located BEs for only less than
5% of the workloads. In contrast, for around 29% of the workloads,
HP suffers a significant slowdown between 1.1× and 2×, while
there exist a few workloads (around 2.5%) in which HP is more
than 2× slower compared to when running alone. Hence, it is evi-
dent that in order to make co-location practical, the impact of in-
terference due to resource contention needs to be mitigated.

On the other hand, CT preserves HPs’ performance for more
workloads than UM; HP is unaffected by the co-located BEs for 15%
of the workloads, compared to less than 5% for UM. Similarly, the
percentage of workloads in which HP runs between 1.1× and 2×
slower is reduced from 29% to 8%. These improvements are made
possible through greatly reducing the resources allocated to BEs.
However, as explained next, this reduction is usually excessive, and
in some cases it can even harm HP’s performance.

2.3.1 Suboptimal use of resources. Figure 2 shows the cumulative
distribution of the minimum number of LLC ways HP needs when
running alone, in order to perform within 90%, 95%, and 99% of
its maximum performance achieved using the full LLC. The ma-
jority of the applications require less than the entire LLC or even
the 19 ways that would be assigned to them by CT; 50% of them
achieve 99% of their maximum performance when allocated only 6
LLC ways. If performance requirements are relaxed, cache require-
ments are reduced further; 90% of the applications achieve 90% of
their maximum performance when allocated only 5 LLC ways.

Key Observation 1. CT’s conservative choice to allocate almost
thewhole LLC toHP leads to a suboptimal partitioning of the cache
resources. In addition, as the cache requirements of an application

0 5 10 15 20

Allocated LLC ways

0

20

40

60

80

100

%
 o
f
A
p
p
lic
a
ti
o
n
s

90%

95%

99%

Figure 2: Cumulative distribution of HP’s LLC allocation re-
quired when running alone to achieve 90%, 95%, and 99% of
the performance achieved using all the 20 ways of the LLC.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
C

T
(1

9) U
M

LLC ways allocated to HP

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

H
P

 S
lo

w
d

o
w

n
 w

.r
.t

.
ru

n
n

in
g

 a
lo

n
e

Workload: milc (HP) - gcc (BEs)

Figure 3: HP’s Slowdown for different static LLC configura-
tions. The x-axis represents the LLC ways assigned to HP.
The rest of the 20 LLC ways are assigned to BEs.

typically vary during its execution [40], CT’s static allocation of
cache space exacerbates the problem.

2.3.2 Bandwidth saturation. CT is based on the intuitive assump-
tion that HP performs best when it receives as much cache as pos-
sible and BEs are contained in the minimum possible cache space.
However, our analysis has unveiled several cases where CT de-
grades HP’s performance while other less conservative static LLC
allocations, or even UM, perform better. Focusing further on these
cases, we have deduced that as CT contains BEs in a single LLC
way, it causes them to experience very frequent cache misses and
thus saturate the memory link. If HP happens to depend on mem-
ory bandwidth, this saturation directly impacts its execution time.

We present one such example in Figure 3, which plots the slow-
down of HP (milc) when running together with 9 BEs (gcc) for all
possible static cache partitions between HP and BEs. We observe
that: (i) HP performs best (1.09× slowdown compared to when run-
ning alone) when it is assigned 2 LLC ways; (ii) HP’s performance
remains close to the best one when allocated 3 to 6 LLC ways; (iii)

ICPP 2019, August 5–8, 2019, Kyoto, Japan Nikas and Papadopoulou, et al.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
HP Application Slowdown

0.0

0.2

0.4

0.6

0.8

1.0
Ef
fe
ct
iv
e
U
til
is
at
io
n

UM
CT

Figure 4: System’s effective utilisation vs HP’s slowdown
when running with 9 BEs with the UM and CT policies.

CT causes a slowdown of 1.45×, and (iv) UM performs similar to
the best static configuration; however, as UM imposes no restric-
tions on cache usage, HP gains control of around 26% of the LLC
instead of the minimum required 2 out of the 20 ways.

KeyObservation 2. In contrast to its core assumption, CT’s static,
conservative and suboptimal utilisation of resources can become
detrimental to HP’s performance.

2.3.3 Classification of multiprogrammed workloads. Motivated by
these two key observations, we classify themultiprogrammedwork-
loads into two classes based on CT’s impact on HP’s performance:
(i) CT-Favoured (CT-F), forwhichCT improvesHP’s performance

over UM, and
(ii) CT-Thwarted (CT-T), for which CT offers no improvement or

even degrades HP’s performance compared to UM.
Out of our 3481 workloads, around 60% fall into the CT-T class,

i.e. in the large majority of cases a static, conservative scheme such
as CT is not suitable for co-locating applications, as it cannot im-
prove HP’s performance compared to UM. In addition, for the re-
maining CT-F workloads, even though CT succeeds in improving
HP’s performance, resources are partitioned suboptimally.

2.4 Impact on Utilisation
To assess the impact of the baseline co-location policies on the
server’s utilisation, we select a representative sample of 120 multi-
programmed workloads from our set of 3481; 50 of them belong to
CT-F, while the rest belong to CT-T.Wemeasure the system’s Effec-
tive Utilisation (EFU) employing the IPCnorm_hmean metric [37],
shown in Equation 1. The harmonic mean of normalised IPCs is
a metric that balances performance and fairness, and takes values
between 0 and 1 to reflect the impact of co-location; a value of 1
means no performance loss, i.e. no impact.

EFU = IPCnorm_hmean =
n

I PCHP
alone

I PCHP +
∑n−1
i=0

I PCBE
alone ,i

I PCBE
i

(1)

Figure 4 presents a scatter plot of the EFU and the slowdown suf-
fered by HP for each one of the 120 multiprogrammed workloads
for both UM and CT. It is evident that the suboptimal resource allo-
cations made by CT take their toll on the utilisation of the system.

On the other hand, UM achieves significantly higher utilisation
than CT but fails to safeguard HP’s performance.

Key Observation 3. To make co-location practical, a scheme is
needed that will increase the system’s utilisation similar to UM
and at the same time minimise the impact on HP, like CT.

In the next section, we propose DICER, an intelligent dynamic
scheme that dynamically identifies the proper amount of cache
space that HP needs, and assigns the rest of the LLC to the BEs.
Unlike UM, which does not manage the shared resources in favour
of any application, DICER prioritises the performance of HP. At
the same time, unlike CT, which statically, naively and conserva-
tively attempts to favour HP, DICER fairly allocates cache space to
the BEs to increase the effective system utilisation.

3 DICER: DILIGENT CACHE PARTITIONING
3.1 Overview
DICER is a new scheme that dynamically adapts HP’s LLC alloca-
tion, trying to match its cache requirements at any moment of its
execution. DICER strives to safeguard HP’s performance for both
CT-F and CT-T workloads, and at the same time assign the maxi-
mum possible cache space to BEs to boost their performance and
increase the system’s utilisation as much as possible.

DICER implements the following high-level execution flow. Exe-
cution time is split in monitoring periods of lengthT , during which
DICER monitors HP’s IPC as well as the memory bandwidth con-
sumed by HP and BEs. At the end of each period, based on these
metrics, DICER assesses the performance and behaviour of the HP
application, and decides how to better partition the LLC among the
co-located applications.

current_allocation.HP = N−1
current_allocation.BE = 1
optimal_allocation = current_allocation
CT_Favoured = True

dicer_driver ():
while (1):

monitor ()
if BW_saturated:

allocation_sampling ()
else:

allocation_optimisation ()
return

monitor ():
BW_saturated = False
measure_IPC_HP ()
measure_MemBW_HP ()
measure_MemBW ()
if MemBW > MemBW_threshold:

BW_saturated = True
return

allocation_sampling ():
CT_Favoured = False
(optimal_allocation , IPC_opt) = sampling ()
current_allocation = optimal_allocation
return

Listing 1: DICER - Main driver.

3.2 Detailed Design
Listing 1 shows the high-level DICER driver. DICER begins simi-
lar to CT, i.e. it assumes that the system executes a CT-F multipro-
grammed workload and, therefore, the best resource partition for
alleviating any impact on HP’s performance is the one imposed

DICER: Diligent Cache Partitioning for Efficient Workload Consolidation ICPP 2019, August 5–8, 2019, Kyoto, Japan

by CT. Thus, DICER starts by allocating all but one LLC ways to
HP and containing all BEs in a single LLC way. Then, at the end
of each monitoring period, DICER has two options, depending on
whether bandwidth saturation has been detected on the memory
link or not: eliminate bandwidth saturation or optimise the alloca-
tion of the LLC.

3.2.1 Eliminating bandwidth saturation. During each monitoring
period, DICER tracks the bandwidth consumed by the co-located
workloads on the memory link. If it surpasses a certain threshold,
DICER detects bandwidth saturation.

The first time bandwidth saturation is detected, DICER recog-
nises that the multiprogrammed workload belongs to the CT-T
class and not CT-F, as initially assumed. Hence, as explained in
Section 2.3.2, CT’s conservative cache partitioning can no longer
be considered the best one for HP. Instead, DICER needs to identify
the allocation that suits HP the best; for that it resorts to sampling.

Allocation sampling. During sampling, DICER applies decreas-
ing LLC partition sizes to HP, allocating the rest of the cache to
BEs, similar to [13]. Every sample is applied for a fixed interval,
long enough to make the effects of the partitioning visible. DICER
monitors HP’s performance and identifies the optimal_allocation
as the one that results to the highest IPC for HP, IPC_opt. Then
optimal_allocation is enforced and a new monitoring period starts.

3.2.2 Optimising cache allocation. DICER’s target is to maximise
the utilisation of the system while minimising the impact of co-
location on HP. To achieve that, DICER carefully adapts HP’s LLC
allocation based on the measurements of the last monitoring pe-
riod, i.e. the effects of the last enforced partitioning on HP. The
cache allocation optimisation mechanism is presented in Listing 2.

allocation_optimisation ():
if phase_change ():

allocation_reset ()
return

if performance_stable ():
current_allocation.HP = current_allocation.HP − 1
current_allocation.BE = current_allocation.BE + 1

else:
if performance_better ():

return
else:

allocation_reset ()
return

Listing 2: DICER - Cache allocation optimisation.

Phase change. As DICER tunes the LLC partitioning based on
HP’s IPC, it is imperative to differentiate between IPC changes
caused by the resource allocation and those caused by the fact that
all applications typically go through various phases with different
performance characteristics. Hence, before optimising the cache
allocation, DICER first checks whether a phase change in the HP
application’s execution has occurred.

DICER denotes as phase changes only points where the appli-
cation suddenly exhibits a need for significantly more cache space.
These points are identified when the memory link bandwidth con-
sumed byHP becomes higher than the geometricmean of the band-
width consumed in the previous threemonitoring periods, as shown
in Equation 2:

MemBW HP
t > (1 + phase_threshold) × 3

√√√ t−3∏
i=t−1

MemBW HP
i (2)

Once a phase change has been detected, DICER needs to reset
the optimisation process as the current allocation is not suitable for
the new phase. Note that application phase changes related only
to the computational behaviour of HP that do not exhibit different
cache requirements, are not detected and do not trigger a reset.
DICER treats them similar to all other execution points, making
decisions based solely on any change observed on HP’s IPC.

Performance validation. When DICER does not detect a phase
change, it assesses whether HP’s performance is stable or it has
been affected by the last allocation decision. The performance is
assumed to remain stable as long as the IPC remains within a per-
centage a close to the IPC of the previous monitoring period, as
shown in Equation 3:

(1 − a) × IPCt−1 ≤ IPCt ≤ (1 + a) × IPCt−1 (3)
If the performance is stable, DICER presumes that the current al-

location surpasses HP’s actual cache requirements. Consequently,
in its attempt to maximise the system’s utilisation, it slightly re-
duces HP’s cache portion and increases BEs’ allocation accordingly
to boost their performance. The validity of this presumption and
the efficacy of the new allocation will be evaluated at the end of
the next monitoring period, based on the impact on HP’s IPC.

On the other hand, if the performance has improved compared
to the previous period, DICER assumes that HP has entered into a
new phase with higher IPC but with the same cache requirements,
as otherwise a phase change would have been detected. Therefore,
DICER selects not to alter the LLC allocation and proceeds to the
next monitoring period.

Finally, if the performance has decreased compared to the previ-
ous period, DICER infers that either the gradual decrease of HP’s
cache portion has eventually harmed HP’s IPC, or HP has entered
a new phase with lower IPC but with the same cache requirements.
As DICER cannot straightforwardly distinguish between these two
cases, it resets the optimisation process, even though it is unneces-
sary for the latter.
allocation_reset ():

if CT_Favoured:
rollback_allocation = current_allocation
current_allocation = optimal_allocation
monitor ()
if BW_saturated:

allocation_sampling ()
return

if performance_better ():
return

else:
current_allocation = rollback_allocation
return

else:
current_allocation = optimal_allocation
monitor ()
if BW_saturated:

allocation_sampling ()
return

if performance_near_opt ():
return

else:
allocation_sampling ()

return

Listing 3: DICER - Cache allocation reset

3.2.3 Resetting cache allocation. Listing 3 presents DICER’s cache
allocation reset mechanism. DICER needs to reset the cache allo-
cation optimisation process when a phase with different cache re-
quirements has been detected or when HP’s IPC has degraded. In

ICPP 2019, August 5–8, 2019, Kyoto, Japan Nikas and Papadopoulou, et al.

both cases, the current LLC allocation is detrimental to HP’s per-
formance, so DICER needs to change it to the one that ensures the
best performance for HP. This configuration however, depends on
the class of the multiprogrammed workload.

CT-Favoured workloads. For CT-Fworkloads, the allocation is re-
verted back to the one imposed by CT, i.e. all but one LLC ways are
assigned to HP. This change is followed by a monitoring period, at
the end of which the correctness of the new allocation is validated:
(i) If bandwidth saturation is detected on the memory link, then

the workload has changed to CT-T and DICER needs to sam-
ple partitions in order to identify the best one for HP.

(ii) If HP’s performance improves, then the decision to reset the
cache allocation was correct and the optimisation process can
proceed again from this point.

(iii) Otherwise, if HP’s performance does not improve, DICER in-
fers that the lower IPC that triggered the reset mechanism
was not caused by the reduction of the allocated cache space.
Instead, it was caused by the application entering a new phase
with a lower IPC and thus, DICER reverts back to the alloca-
tion that triggered the reset process.

CT-Thwarted workloads. For CT-T workloads, the LLC alloca-
tion is reverted back to the last optimal_allocation, i.e. the one dis-
covered during the last partition sampling. Similar to CT-F, this
change is followed by a monitoring period at the end of which the
efficacy of the new allocation is validated:
(i) If bandwidth saturation is detected on the memory link, then

partition sampling has to be performed again.
(ii) If HP’s IPC is close to IPC_opt, i.e. the performance is sim-

ilar to when the allocation was identified as optimal, then
DICER is deemed to have reverted to the best possible config-
uration and the optimisation process can proceed again from
this point.

(iii) Otherwise, if HP’s IPC is not close to IPC_opt, DICER assumes
that the best possible configuration has changed and partition
sampling has to be performed again.

3.3 Implementation
We implement DICER by extending the Intel® RDT Software Pack-
age (v1.1.0) [3], an open source stand-alone library which allows
control of the LLC and memory bandwidth monitoring and allo-
cation mechanisms, namely CMT, CAT, MBM and MBA. As our
server though does not support MBA, DICER employs only the
former three.

DICER partitions the LLC in an isolated fashion, i.e., there are
non-overlapping portions of LLC between the HP and the BEs. Fur-
ther, as modern servers [1, 4, 44] offer way-based LLC partitioning,
DICER modifies allocations in way granularity. When the alloca-
tions are altered, the contents of the LLC are not affected; they
remain intact until they are evicted by future LLC misses.

4 EVALUATION
4.1 Platform & Methodology

Platform configuration. We perform our experiments and eval-
uation on an Intel Xeon E5-2630 v4 processor equipped with 10

H
ar
dw

ar
e

Processor
Intel Xeon E5-2630 v4 (Broadwell)
10 cores, 2.2GHz, SMT disabled

LLC 25MB, 20-way set associative

Memory Bandwidth 68.3 Gbps per channel

Memory 128GB DDR4

D
IC

ER

Monitoring period T = 1 sec

BW saturation threshold MemBW_threshold = 50 Gbps

Phase detection threshold phase_threshold = 30% (Equation 2)

IPC stability percentage a = 5% (Equation 3)

Table 1: System configuration.

cores, 25MB 20-way LLC, and 128GB of memory. Table 1 presents
the details of the system together with the configuration parame-
ters of DICER. It should be noted that all the parameter values have
been selected after performing a sensitivity analysis which for the
sake of space is not included in this paper.

Evaluation methodology. We employ in total 59 applications, 9
from the Parsec 3.0 [6] (serial versions) and 25 from the SPEC CPU
2006 [17] (8 of them with multiple inputs) suites. We create multi-
programmed workloads by nominating one application as HP and
one as BE.Thus, each multiprogrammed workload comprises 1 HP
co-located with multiple BE instances, depending on the number
of cores used. For example, if all the cores of the system are used,
the workload comprises 1 HP and 9 BEs.

Overall, we create 59 × 59 = 3481 possible multiprogrammed
workloads, which we use for our initial study and the evaluation of
the baseline co-location policies. To evaluate DICER, we use a rep-
resentative sample of 120 multiprogrammed workloads from our
original set of 3481; 50 of them belong to CT-F and 70 to CT-T.

Each experiment starts simultaneously the co-located HP and
BEs, pinned on separate cores of the same socket. When an appli-
cation finishes, it is restarted until all of them have executed at
least once. That way, we ensure that HP is constantly executed ex-
periencing full contention on the shared resources.

As we intentionally approach the resource allocation problem
transparently to the running applications, without any application-
specific information, we focus on their throughput in terms of In-
structions per Cycle (IPC) to measure QoS. Therefore, if an appli-
cation requires a QoS level of 90%, we consider that it achieves its
Service-Level Objective (SLO) if its IPC is equal or greater than 90%
of the IPC achievedwhen executing alone on the system (IPCalone);
otherwise the SLO ismissed and the Service-Level Agreement (SLA)
is violated.

4.2 DICER Evaluation
4.2.1 HP’s performance. Figure 5 compares the performance of
HP and BEs for the different co-location policies, namely DICER,
UM and CT, for the two identified classes of multiprogrammed
workloads. It is evident that regardless of theworkload class, DICER
provides either the best or close to the best performance for HP.

Specifically, for CT-F workloads (shown in the leftmost part of
Figure 5) DICER performs similar to CT. In contrast, for the CT-
T class that, as explained in Section 2.3.3, includes workloads for

DICER: Diligent Cache Partitioning for Efficient Workload Consolidation ICPP 2019, August 5–8, 2019, Kyoto, Japan

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
lis
e
d
 H
P
 I
P
C

CT-F CT-T
UM CT DICER

ca
lc
u
lix
1
 g
o
b
m
k2

n
a
m
d
1
 c
a
lc
u
lix
1

h
m
m
e
r1
 b
o
d
y
tr
a
ck
1

b
o
d
y
tr
a
ck
1
 h
2
6
4
re
f3

b
la
ck
sc
h
o
le
s1
 t
o
n
to
1

g
cc
_b
a
se
2
 g
o
b
m
k1

a
st
a
r2
 g
o
b
m
k4

p
e
rl
b
e
n
ch
2
 g
o
b
m
k2

lib
q
u
a
n
tu
m
1
 d
e
d
u
p
1

G
e
m
sF
D
T
D
1
 g
o
b
m
k1

d
e
d
u
p
1
 c
a
lc
u
lix
1

le
sl
ie
3
d
1
 g
o
b
m
k4

g
cc
_b
a
se
7
 g
cc
_b
a
se
4

g
cc
_b
a
se
6
 b
la
ck
sc
h
o
le
s1

b
zi
p
2
1
 p
o
v
ra
y
1

g
cc
_b
a
se
8
 n
a
m
d
1

lb
m
1
 g
cc
_b
a
se
9

sw
a
p
ti
o
n
s1
 g
ro
m
a
cs
1

h
2
6
4
re
f2
 b
zi
p
2
5

g
cc
_b
a
se
5
 h
m
m
e
r2

lb
m
1
 g
cc
_b
a
se
8

m
ilc
1
 g
o
b
m
k2

st
re
a
m
cl
u
st
e
r1
 g
cc
_b
a
se
9

b
zi
p
2
4
 n
a
m
d
1

so
p
le
x
2
 a
st
a
r1

G
e
m
sF
D
T
D
1
 g
cc
_b
a
se
2

m
ilc
1
 g
o
b
m
k1

G
e
m
sF
D
T
D
1
 g
cc
_b
a
se
7

b
w
a
v
e
s1
 g
cc
_b
a
se
8

p
o
v
ra
y
1
 h
m
m
e
r2

h
2
6
4
re
f1
 g
o
b
m
k3

g
cc
_b
a
se
4
 d
e
d
u
p
1

b
zi
p
2
2
 g
ro
m
a
cs
1

g
o
b
m
k4
 f
lu
id
a
n
im
a
te
1

b
zi
p
2
1
 s
je
n
g
1

m
ilc
1
 g
cc
_b
a
se
3

G
e
m
sF
D
T
D
1
 g
cc
_b
a
se
3

G
e
m
sF
D
T
D
1
 g
cc
_b
a
se
4

G
e
m
sF
D
T
D
1
 g
cc
_b
a
se
5

G
e
m
sF
D
T
D
1
 g
cc
_b
a
se
6

G
e
m
sF
D
T
D
1
 g
cc
_b
a
se
8

lb
m
1
 g
cc
_b
a
se
3

lb
m
1
 g
cc
_b
a
se
4

lb
m
1
 g
cc
_b
a
se
5

lib
q
u
a
n
tu
m
1
 g
cc
_b
a
se
3

lib
q
u
a
n
tu
m
1
 g
cc
_b
a
se
5

lib
q
u
a
n
tu
m
1
 g
cc
_b
a
se
6

lib
q
u
a
n
tu
m
1
 g
cc
_b
a
se
8

m
ilc
1
 b
zi
p
2
3

m
ilc
1
 g
cc
_b
a
se
1

m
ilc
1
 g
cc
_b
a
se
4

m
ilc
1
 g
cc
_b
a
se
5

m
ilc
1
 g
cc
_b
a
se
6

m
ilc
1
 g
cc
_b
a
se
8

m
ilc
1
 g
cc
_b
a
se
9

m
ilc
1
 h
2
6
4
re
f3

m
ilc
1
 h
m
m
e
r2

m
ilc
1
 n
a
m
d
1

m
ilc
1
 p
e
rl
b
e
n
ch
2

p
e
rl
b
e
n
ch
2
 b
w
a
v
e
s1

so
p
le
x
2
 g
cc
_b
a
se
3

so
p
le
x
2
 g
cc
_b
a
se
8

st
re
a
m
cl
u
st
e
r1
 g
cc
_b
a
se
3

st
re
a
m
cl
u
st
e
r1
 g
cc
_b
a
se
4

st
re
a
m
cl
u
st
e
r1
 g
cc
_b
a
se
5

st
re
a
m
cl
u
st
e
r1
 g
cc
_b
a
se
6

st
re
a
m
cl
u
st
e
r1
 g
cc
_b
a
se
8

st
re
a
m
cl
u
st
e
r1
 h
m
m
e
r2

st
re
a
m
cl
u
st
e
r1
 p
o
v
ra
y
1

ze
u
sm

p
1
 g
cc
_b
a
se
3

g
cc
_b
a
se
7
 l
e
sl
ie
3
d
1

a
st
a
r1
 g
cc
_b
a
se
7

a
st
a
r1
 l
e
sl
ie
3
d
1

a
st
a
r1
 l
ib
q
u
a
n
tu
m
1

a
st
a
r1
 m

cf
1

a
st
a
r1
 s
o
p
le
x
1

a
st
a
r2
 l
e
sl
ie
3
d
1

b
o
d
y
tr
a
ck
1
 l
ib
q
u
a
n
tu
m
1

b
zi
p
2
3
 m

cf
1

b
zi
p
2
3
 m

ilc
1

b
zi
p
2
6
 s
tr
e
a
m
cl
u
st
e
r1

ca
n
n
e
a
l1
 G
e
m
sF
D
T
D
1

g
cc
_b
a
se
1
 l
b
m
1

g
cc
_b
a
se
1
 l
e
sl
ie
3
d
1

g
cc
_b
a
se
3
 l
e
sl
ie
3
d
1

g
cc
_b
a
se
4
 l
e
sl
ie
3
d
1

g
cc
_b
a
se
5
 l
e
sl
ie
3
d
1

g
cc
_b
a
se
6
 l
e
sl
ie
3
d
1

g
cc
_b
a
se
8
 l
e
sl
ie
3
d
1

g
cc
_b
a
se
9
 l
e
sl
ie
3
d
1

G
e
m
sF
D
T
D
1
 l
e
sl
ie
3
d
1

G
e
m
sF
D
T
D
1
 m

cf
1

G
e
m
sF
D
T
D
1
 m

ilc
1

g
o
b
m
k1
 l
e
sl
ie
3
d
1

g
o
b
m
k1
 m

cf
1

g
o
b
m
k3
 l
e
sl
ie
3
d
1

g
o
b
m
k4
 l
e
sl
ie
3
d
1

g
ro
m
a
cs
1
 l
e
sl
ie
3
d
1

h
2
6
4
re
f2
 l
e
sl
ie
3
d
1

h
2
6
4
re
f3
 s
o
p
le
x
2

lb
m
1
 l
b
m
1

le
sl
ie
3
d
1
 l
e
sl
ie
3
d
1

lib
q
u
a
n
tu
m
1
 h
2
6
4
re
f1

m
cf
1
 b
w
a
v
e
s1

m
cf
1
 l
ib
q
u
a
n
tu
m
1

m
cf
1
 s
tr
e
a
m
cl
u
st
e
r1

o
m
n
e
tp
p
1
 G
e
m
sF
D
T
D
1

o
m
n
e
tp
p
1
 l
b
m
1

o
m
n
e
tp
p
1
 l
e
sl
ie
3
d
1

o
m
n
e
tp
p
1
 s
tr
e
a
m
cl
u
st
e
r1

p
e
rl
b
e
n
ch
1
 l
b
m
1

p
o
v
ra
y
1
 l
ib
q
u
a
n
tu
m
1

sj
e
n
g
1
 b
w
a
v
e
s1

so
p
le
x
1
 m

ilc
1

so
p
le
x
1
 o
m
n
e
tp
p
1

sp
h
in
x
1
 b
w
a
v
e
s1

to
n
to
1
 l
ib
q
u
a
n
tu
m
1

X
a
la
n
1
 s
tr
e
a
m
cl
u
st
e
r1

X
a
la
n
1
 X
a
la
n
1

X
a
la
n
1
 z
e
u
sm

p
1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
lis
e
d
 B
E
 I
P
C

CT-F CT-T

Figure 5: Performance of HP (top) and BEs (bottom) normalised to when each application runs alone (higher is better). DICER
provides consistently the best HP performance for both workload types while improving BEs’ performance compared to CT.

2 3 4 5 6 7 8 9 10

Cores

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ef
fe
ct
iv
e
U
til
is
at
io
n

UM
CT
DICER

Figure 6: Geometric mean of the effective utilisation
achieved for the three co-location policies.The x-axis repre-
sents the employed cores of the server, one of which is as-
signed to HP and the rest to BEs.

which CT either offers no improvement or even harms HP’s per-
formance compared to UM, DICER performs similar to UM. At the
same time, by allocatingmore cache space to BEs, DICER improves
their performance significantly across all cases compared to CT.

4.2.2 Effective utilisation. To evaluate whether DICER achieves
its goal of increasing the server’s utilisation, we measure the EFU
while varying the number of co-located BEs and plot its geometric
mean across our 120 multiprogrammed workloads in Figure 6.

As expected, DICER significantly outperforms CT in terms of
effective utilisation. In particular, as the number of co-located BEs
increases, the effective system utilisation drops significantly when

using CT, as it restricts all the BEs in a single LLC way. On the
other hand, UM provides the best effective utilisation. However, as
it does not exert any control on the way resources are shared, UM
impacts the HP application severely; not only it degrades HP’s per-
formance significantly for CT-F workloads, as shown in Figure 5,
but in general it exhibits a low success rate in achieving perfor-
mance SLOs, as explained next.

Figure 7 presents the percentage of workloads for which the co-
location policies succeed in achieving a given SLO for HP, when
varying the number of co-located BEs, for various SLOs. An SLO of
80% corresponds to a QoS level for HP of at least 80%, i.e. a perfor-
mance degradation of maximum 20% compared to when running
alone can be tolerated for the HP before the SLO is missed.

Although UM provides the best effective utilisation, it is evi-
dent that it manages to achieve the desired SLO for a lot fewer
workloads compared to CT and DICER. Especially as the number
of co-located BEs increases and the SLO targets rise, SLO misses
for UM proliferate. On the other hand, for SLOs from 75% up to
90%, DICER sustains HP’s QoS for a significantly higher percent-
age of workloads compared to CT, particularly when more than
half of the server cores are occupied. This outcome is the result of
DICER’s dynamic adaptation to contention on both the LLC and
memory bandwidth, which aggravates under high core utilisation.
For higher SLOs (95%), DICER and CT achieve the given target for
about the same percentage of workloads.

Our evaluation reveals that DICER in general optimises both
HP’s performance and the effective system utilisation across both
classes of co-located workloads. To further elaborate and quantify
how well DICER manages to optimise both targets, we follow the

ICPP 2019, August 5–8, 2019, Kyoto, Japan Nikas and Papadopoulou, et al.

2 3 4 5 6 7 8 9 10

Cores

20

30

40

50

60

70

80

90

100

SL
O

 a
ch

ie
ve

d
(%

)

SLO = 80.0%

2 3 4 5 6 7 8 9 10

Cores

SLO = 85.0%

2 3 4 5 6 7 8 9 10

Cores

SLO = 90.0%

2 3 4 5 6 7 8 9 10

Cores

SLO = 95.0%

UM
CT
DICER

Figure 7: Percentage of workloads that achieve the given SLO for HP for the three co-location policies. The x-axis represents
the employed cores of the server, one of which is assigned to HP and the rest to BEs. DICER performs equally well or better
than other mechanisms especially for high number of employed cores.

2 3 4 5 6 7 8 9 10

Cores

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
U
C
I

SLO = 80.0%

2 3 4 5 6 7 8 9 10

Cores

SLO = 85.0%

2 3 4 5 6 7 8 9 10

Cores

SLO = 90.0%

2 3 4 5 6 7 8 9 10

Cores

SLO = 95.0%

UM - λ=1
CT - λ=1
DICER λ=1

(a) λ = 1

2 3 4 5 6 7 8 9 10

Cores

0.0

0.2

0.4

0.6

0.8

1.0

S
U
C
I

SLO = 80.0%

2 3 4 5 6 7 8 9 10

Cores

SLO = 85.0%

2 3 4 5 6 7 8 9 10

Cores

SLO = 90.0%

2 3 4 5 6 7 8 9 10

Cores

SLO = 95.0%

UM - λ=0.5
CT - λ=0.5
DICER λ=0.5
UM - λ=2
CT - λ=2
DICER - λ=2

(b) λ = 0.5 and λ = 2

Figure 8: Comparison of co-location policies in the joint optimisation problem of achieving SLOs while maximising EFU.

example of [39] and define a combined metric, namely the SLO-
Effective Utilisation Combined Index (SUCI).

For a multiprogrammed workload comprising k applications,
SUCI is defined as follows:

SUCI = cSLO ∗ EFU λ (4)

where cSLO denoteswhether the the requested SLOwas achieved:

cSLO =

{
1, if I PCHP

I PCHP
alone

>= SLO

0, else
(5)

SUCI takes a value between 0 and 1, with 0 indicating that the
SLOwas missed and an SLA violation has occurred; this is done on

purpose to disregard any BE improvements that materialise caus-
ing HP to miss its SLO. SUCI increases when both the HP’s SLO
is achieved and the effective system utilisation of the server in-
creases. When λ = 1, the two terms of SUCI are equally weighted,
i.e. achieving SLOs is equally important to system utilisation. If
though one of the terms is deemed to be more important than the
other, λ needs to be adjusted accordingly. If utilisation is more im-
portant, then λ needs a value greater than 1; otherwise, a value less
than 1 will make conformance to SLOs more significant.

Figure 8 illustrates how UM, CT and DICER perform in terms of
SUCI, for various numbers of co-located workloads and SLOs. We
plot the geometric mean of SUCI to summarise results across our
120 workloads. Overall, DICER significantly outperforms the other

DICER: Diligent Cache Partitioning for Efficient Workload Consolidation ICPP 2019, August 5–8, 2019, Kyoto, Japan

two policies for all SLOs, regardless of whether the conformance
to SLOs is equally important to the the server’s utilisation or not.
Therefore, we deduce that DICER is an efficient and effective policy
that can maximise the server’s utilisation, while minimising the
possibility of QoS violations for HP.

5 RELATEDWORK
DICER leverages existing support for cache partitioning on mod-
ern servers, targeting the joint optimisation problem of maintain-
ing the QoS of an HP application while maximising the effective
system utilisation by co-locating multiple BEs. DICER operates in
a practical, application transparent manner and is agnostic to the
target performance of the HP.

Cook et al. [9] were the first to evaluate the potential of hard-
ware cache partitioning for co-locating HP and BEs on a real sys-
tem, and proposed a dynamic cache partitioning scheme based on
the metric of LLC misses. However, that scheme lacks support for
identifying and mitigating memory bandwidth saturation. Lo et
al. [29] proposed Heracles, a resource manager that takes into ac-
count the QoS status provided by HP itself together with low-level
system metrics, and applies cache partitioning, frequency scaling,
thread packing, and network control. Kasture and Sanchez [25]
proposed Ubik, a cache management scheme that targets latency-
critical workloads with strict QoS requirements. However, both
schemes rely on application-specific metrics that are provided by
the application itself. In addition, Ubik requires extra hardware
support for gathering miss curves [37]. Dirigent [49] reduces the
variation in execution time of HP applications when co-located
with BEs, by dynamically predicting applications’ completion time
and tuning cache shares and frequency. However, Dirigent requires
offline profiling of HPs in isolation. Papadakis et al. [35] proposed
DCP-QoS, a dynamic cache partitioning scheme for co-locating
HP and BEs that is similar to DICER. While DCP-QoS follows a
black-box approach, it lacks support for identifying and mitigating
memory bandwidth saturation. Finally, Funaro et al. [14] proposed
Ginseng, a market driven cloud mechanism for allocating LLC por-
tions to guest virtual machines. Each guest VM bids for cache ways
through an economic agent that states a valuation for each num-
ber of ways. DICER is orthogonal to Ginseng as it could be used to
increase revenue from the cloud provider perspective.

LLC partitioning has also been recently used as a mechanism
to enhance system fairness and throughput. Selfa et al. [38] in-
troduced various clustering policies to improve system fairness
based on Intel’s CAT. Similarly, El-Sayed et al.[13] proposed a hy-
brid cache partitioning and sharing scheme that groups applica-
tions into clusters and then partitions the LLC among these clus-
ters, to increase throughput. Park et al. [36] proposed CoPart, a
resource manager that dynamically characterises applications and
partitions the LLC and memory bandwidth to the applications, us-
ing Intel CAT and MBA, to improve system fairness. Finally, Wang
et al. [44] proposed SWAP, a fine-grained LLCmanagement scheme
that combines set and way partitioning through page colouring [2,
26, 28, 48] and hardware support. However, all these schemes treat
applications as of equal priority and lack any support for QoS, un-
less applications provide explicitly their metric of interest.

Besides commercial hardware mechanisms for resource parti-
tioning, several hardware/software solutions have been proposed
to partition or manage hardware resources for QoS and/or fair-
ness [12, 18, 20, 33], and several cache management policies and
mechanisms have been proposed for increasing throughput and
mitigating interference in LLC [21, 23, 34, 37, 41, 45, 46]. Finally,
prior works focus on application co-scheduling, targeting to re-
duce interference and mitigate the effects of contention on applica-
tion and system performance, both for applications of equal priori-
ties [5, 15, 16, 22, 24, 27, 42, 50] andwhen the QoS of latency-critical
applications needs to be safeguarded [11, 47]. Co-scheduling is or-
thogonal to our work.

6 CONCLUSIONS
In this paper, we have presented DICER, a novel, practical, dy-
namic cache partitioning scheme for the extended resource alloca-
tion problem of co-locating one HP and multiple BE applications,
where the HP operates under a given SLO.We have based DICER’s
design on a detailed analysis of the impact of simple co-location
policies, which revealed that: (i) an HP application can maintain
its performance using only a portion of LLC ways; (ii) the per-
formance of an HP application that utilises all the available LLC
space can be harmed by contention and/or interference on the
memory bandwidth, and (iii) dynamic management of shared re-
sources can help accommodate more BEs to increase the effective
system utilisation. DICER as a mechanism extends Intel RDT and
takes advantage of modern servers’ capabilities for cache monitor-
ing, cache allocation and memory bandwidth monitoring. DICER
operates agnostically to the workload and the target performance
of HP and uses resource monitoring to adapt the LLC allocation
to the current needs of HP and the current resource utilisation on
the server. The co-located BEs benefit from cache space that is un-
necessary or harmful for the performance of the HP. In this way,
DICER achieves both high performance for the HP application and
high effective system utilisation.

We have evaluated DICER on 120 multiprogrammed workloads,
in comparison to an unmanaged (UM) cache allocation policy and a
static cache allocation policy, where the HP application takes over
the largest possible part of the LLC (CT). DICER achieves high con-
formance of theHP to given SLOs (more than 90% of ourworkloads
achieve an SLO of 80% and 74% of our workloads achieve an SLO
of 90%), successfully adapting to the needs of the HP application
and safeguarding its performance. In comparison to CT, DICER
achieves equally high or better performance for the HP, success-
fully detecting the needs of the HP in terms of LLC cache space
and mitigating contention effects on the memory bandwidth. In
comparison to UM, which does not distinguish between HP and
BEs, DICER only mildly reduces system utilisation, in favour of
the performance of HP, while ensuring progress of the BEs. Finally,
using a combined index for SLO and effective utilisation, we have
showed that DICER is an effective policy for a provider that seeks
to maximise system utilisation without compromising the perfor-
mance of the HP and violating their SLAs with their clients.

We are extending DICER to explicitly, dynamically control the
memory bandwidth, using Intel’s MBA, which, at the same time,
will allow DICER to be more diligent to its current cache parti-
tioning policies. To better safeguard the performance of the HP

ICPP 2019, August 5–8, 2019, Kyoto, Japan Nikas and Papadopoulou, et al.

application, we intend to extend DICER to dynamically manage
the number of co-located BEs. Further analysis is also necessary
to investigate whether assigning overlapping cache partitions to
the HP and the BEs can benefit some workloads. Finally, we will
explore howDICER can bemore effective under various user-faced
or provider-faced scenarios of achieving a given SLO while max-
imising the effective system utilisation.

ACKNOWLEDGMENTS
This research has received funding from the EuropeanUnion’sHori-
zon 2020 research and innovation programme under Grant Agree-
ment no. 732366 (ACTiCLOUD).

REFERENCES
[1] [n. d.]. Cavium ThunderX family of workload optimized processors. https://

cavium.com/pdfFiles/ThunderX_PB_p12_Rev1.pdf.
[2] [n. d.]. Free BSD Page Coloring. https://www.freebsd.org/doc/en/articles/

vm-design/page-coloring-optimizations.html.
[3] [n. d.]. Intel RDT Software Package. https://github.com/01org/intel-cmt-cat.
[4] [n. d.]. Intel Resource Director Technology. https://www-ssl.intel.com/content/

www/us/en/architecture-and-technology/resource-director-technology.html.
[5] Major Bhadauria and Sally A. McKee. 2010. An Approach to Resource-aware

Co-scheduling for CMPs. In ICS’10. 189–199.
[6] Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D. Disserta-

tion. Princeton University.
[7] Quan Chen, Hailong Yang, Minyi Guo, Ram Srivatsa Kannan, Jason Mars, and

Lingjia Tang. 2017. Prophet: Precise QoS Prediction on Non-Preemptive Accel-
erators to Improve Utilization in Warehouse-Scale Computers. In ASPLOS ’17.
17–32.

[8] Quan Chen, Hailong Yang, Jason Mars, and Lingjia Tang. 2016. Baymax: QoS
Awareness and Increased Utilization for Non-Preemptive Accelerators in Ware-
house Scale Computers. In ASPLOS ’16. 681–696.

[9] Henry Cook, Miquel Moreto, Sarah Bird, Khanh Dao, David A. Patterson, and
Krste Asanovic. 2013. A Hardware Evaluation of Cache Partitioning to Improve
Utilization and Energy-efficiency While Preserving Responsiveness. In ISCA ’13.
308–319.

[10] Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-aware Sched-
uling for Heterogeneous Datacenters. In ASPLOS’13. 77–88.

[11] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: resource-efficient
and QoS-aware cluster management. In ASPLOS ’14. 127–144.

[12] Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt. 2010. Fairness
via SourceThrottling: A Configurable and High-performance Fairness Substrate
for Multi-core Memory Systems. In ASPLOS’10. 335–346.

[13] N. El-Sayed, A. Mukkara, P. Tsai, H. Kasture, X. Ma, and D. Sanchez. 2018. KPart:
A Hybrid Cache Partitioning-Sharing Technique for Commodity Multicores. In
HPCA ’18. 104–117.

[14] Liran Funaro, Orna Agmon Ben-Yehuda, and Assaf Schuster. 2016. Ginseng:
Market-driven LLC Allocation. In USENIX ATC ’16. 295–308.

[15] Alexandros-Herodotos Haritatos, Georgios Gourmas, Konstantinos Nikas, and
Nectarios Koziris. 2016. A resource-centric Application Classification Approach.
In COSH’16. 7–12.

[16] Alexandros-Herodotos Haritatos, Georgios Goumas, Nikos Anastopoulos, Kon-
stantinos Nikas, Kornilios Kourtis, and Nectarios Koziris. 2014. LCA: A Memory
Link and Cache-aware Co-scheduling Approach for CMPs. In PACT’14. 469–470.

[17] John L Henning. 2006. SPEC CPU2006 benchmark descriptions. ACM SIGARCH
Computer Architecture News 34, 4 (2006), 1–17.

[18] Andrew Herdrich, Ramesh Illikkal, Ravi Iyer, Don Newell, Vineet Chadha, and
Jaideep Moses. 2009. Rate-based QoS Techniques for Cache/Memory in CMP
Platforms. In ICS’09. 479–488.

[19] Andrew Herdrich, Edwin Verplanke, Priya Autee, Ramesh Illikkal, Chris Gianos,
Ronak Singhal, and Ravi Iyer. 2016. Cache QoS: From concept to reality in the
Intel® Xeon® processor E5-2600 v3 product family. In HPCA’16. 657–668.

[20] Ravi R. Iyer, Li Zhao, Fei Guo, Ramesh Illikkal, Srihari Makineni, Donald Newell,
Yan Solihin, Lisa R. Hsu, and Steven K. Reinhardt. 2007. QoS policies and archi-
tecture for cache/memory in CMP platforms. In SIGMETRICS’07. 25–36.

[21] Aamer Jaleel, William Hasenplaugh, Moinuddin K.Qureshi, Julien Sebot, Simon
C. Steely Jr., and Joel S. Emer. 2008. Adaptive insertion policies for managing
shared caches. In PACT’08. 208–219.

[22] Aamer Jaleel, HashemH. Najaf-abadi, Samantika Subramaniam, Simon C. Steely,
and Joel Emer. 2012. CRUISE: Cache Replacement and Utility-aware Scheduling.
In ASPLOS’12. 249–260.

[23] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, Jr., and Joel Emer. 2010. High
Performance Cache Replacement Using Re-reference Interval Prediction (RRIP).
In ISCA ’10. 60–71.

[24] Yunlian Jiang, Xipeng Shen, Jie Chen, and Rahul Tripathi. 2008. Analysis and
Approximation of Optimal Co-scheduling on Chip Multiprocessors. In PACT ’08.
220–229.

[25] Harshad Kasture and Daniel Sanchez. 2014. Ubik: Efficient Cache Sharing with
Strict Qos for Latency-critical Workloads. In ASPLOS ’14. 729–742.

[26] R. E. Kessler and Mark D. Hill. 1992. Page Placement Algorithms for Large Real-
indexed Caches. ACM Trans. Comput. Syst. 10, 4 (Nov. 1992), 338–359.

[27] Kishore Kumar Pusukuri, Rajiv Gupta, and Laxmi N. Bhuyan. 2013. ADAPT: A
framework for coscheduling multithreaded programs. ACM Trans. Archit. Code
Optim. 9, 4, Article 45 (Jan. 2013), 24 pages.

[28] Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang, and P. Sa-
dayappan. 2008. Gaining Insights into Multicore Cache Partitioning: Bridging
the Gap between Simulation and Real Systems. In HPCA’08. 367–378.

[29] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and
Christos Kozyrakis. 2015. Heracles: Improving Resource Efficiency at Scale. In
ISCA’15. 450–462.

[30] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou Soffa.
2011. Bubble-Up: Increasing Utilization in Modern Warehouse Scale Computers
via Sensible Co-locations. In MICRO-44. 248–259.

[31] Paul Marshall, Kate Keahey, and Tim Freeman. 2011. Improving utilization of
infrastructure clouds. In CCGrid’11. 205–214.

[32] Andreas Merkel, Jan Stoess, and Frank Bellosa. 2010. Resource-conscious sched-
uling for energy efficiency on multicore processors. In EuroSys’10. 153–166.

[33] Kyle J. Nesbit, Miquel Moretó, Francisco J. Cazorla, Alex Ramírez, Mateo Valero,
and James E.i Smith. 2008. Multicore Resource Management. IEEE Micro 28, 3
(2008), 6–16.

[34] Konstantinos Nikas, Matthew Horsnell, and Jim D. Garside. 2008. An adap-
tive bloom filter cache partitioning scheme for multicore architectures. In IC-
SAMOS’08. 25–32.

[35] Ioannis Papadakis, Konstantinos Nikas, Vasileios Karakostas, Georgios I.
Goumas, and Nectarios Koziris. [n. d.]. Improving QoS and Utilisation inmodern
multi-core servers with Dynamic Cache Partitioning.

[36] Jinsu Park, Seongbeom Park, and Woongki Baek. 2019. CoPart: Coordinated
Partitioning of Last-Level Cache and Memory Bandwidth for Fairness-Aware
Workload Consolidation on Commodity Servers. In Proceedings of the Fourteenth
EuroSys Conference 2019. ACM, 10.

[37] Moinuddin K. Qureshi and Yale N. Patt. 2006. Utility-Based Cache Partitioning:
A Low-Overhead, High-Performance, Runtime Mechanism to Partition Shared
Caches. In MICRO-39. 423–432.

[38] V. Selfa, J. Sahuquillo, L. Eeckhout, S. Petit, and M. E. Gómez. 2017. Application
Clustering Policies to Address System Fairness with Intel’s Cache Allocation
Technology. In PACT ’17. 194–205.

[39] Yannis Sfakianakis, Christos Kozanitis, Christos Kozyrakis, and Angelos Bilas.
2018. QuMan: Profile-based Improvement of Cluster Utilization. ACM Transac-
tions on Architecture and Code Optimization (TACO) 15, 3 (2018), 27.

[40] Timothy Sherwood, Erez Perelman, Greg Hamerly, Suleyman Sair, and Brad
Calder. 2003. Discovering and Exploiting Program Phases. IEEE Micro 23, 6
(Nov. 2003), 84–93.

[41] Shekhar Srikantaiah, Mahmut T. Kandemir, and Mary Jane Irwin. 2008. Adap-
tive set pinning: managing shared caches in chip multiprocessors. In ASPLOS’08.
135–144.

[42] Lingjia Tang, Jason Mars, and Mary Lou Soffa. 2011. Contentiousness vs. sensi-
tivity: improving contention aware runtime systems on multicore architectures.
In EXADAPT ’11. 12–21.

[43] Lingjia Tang, Jason Mars, Wei Wang, Tanima Dey, and Mary Lou Soffa. [n. d.].
ReQoS: Reactive Static/Dynamic Compilation for QoS in Warehouse Scale Com-
puters. In ASPLOS ’13. 89–100.

[44] X. Wang, S. Chen, J. Setter, and J. F. Martínez. 2017. SWAP: Effective Fine-Grain
Management of Shared Last-Level Caches with MinimumHardware Support. In
HPCA ’17. 121–132.

[45] Carole-JeanWu, Aamer Jaleel, Will Hasenplaugh, Margaret Martonosi, Simon C.
Steely, Jr., and Joel Emer. 2011. SHiP: Signature-based Hit Predictor for High
Performance Caching. In MICRO ’11. 430–441.

[46] Yuejian Xie and Gabriel H. Loh. 2009. PIPP: Promotion/Insertion Pseudo-
partitioning of Multi-core Shared Caches. In ISCA’09. 174–183.

[47] Hailong Yang, Alex D. Breslow, Jason Mars, and Lingjia Tang. 2013. Bubble-flux:
precise online QoS management for increased utilization in warehouse scale
computers. In ISCA’13. 607–618.

[48] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. 2009. Towards Practical Page
Coloring-based Multicore Cache Management. In EuroSys ’09. 89–102.

[49] Haishan Zhu and Mattan Erez. 2016. Dirigent: Enforcing QoS for Latency-
Critical Tasks on Shared Multicore Systems. In ASPLOS ’16. 33–47.

[50] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. 2010. Address-
ing Shared Resource Contention in Multicore Processors via Scheduling. In AS-
PLOS ’10. 129–142.

https://cavium.com/pdfFiles/ThunderX_PB_p12_Rev1.pdf
https://cavium.com/pdfFiles/ThunderX_PB_p12_Rev1.pdf
https://www.freebsd.org/doc/en/articles/vm-design/page-coloring-optimizations.html
https://www.freebsd.org/doc/en/articles/vm-design/page-coloring-optimizations.html
https://github.com/01org/intel-cmt-cat
https://www-ssl.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www-ssl.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html

	Abstract
	1 Introduction
	2 Workload consolidation
	2.1 Execution Scenario
	2.2 Baseline Co-location Policies
	2.3 Impact on HP Performance
	2.4 Impact on Utilisation

	3 DICER: Diligent Cache Partitioning
	3.1 Overview
	3.2 Detailed Design
	3.3 Implementation

	4 Evaluation
	4.1 Platform & Methodology
	4.2 DICER Evaluation

	5 Related work
	6 Conclusions
	Acknowledgments
	References

