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Abstract. This paper presents a fast and simple contention-aware scheduling pol-
icy for CMP systems that relies on information collected at runtime with no ad-
ditional hardware support. Our approach is based on a classification scheme that
detects activity and possible interference across the entire memory hierarchy, in-
cluding both shared caches and memory links. We schedule multithreaded appli-
cations taking into account their class, targeting both total system throughput and
application fairness in terms of fair distribution of co-execution penalties. We have
implemented a user level scheduler and evaluated our policy in several scenarios
with different contention levels and a variety of multiprogrammed multithreaded
workloads. Our results demonstrate that the proposed scheduling policy outper-
forms the established Linux and Gang schedulers, as well as a number of research
contention-aware schedulers, both in system throughput and application fairness.
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1. Introduction

Chip Multi-Processor (CMP) designs are the dominant paradigm in server, desktop, HPC
and mobile computing environments. CMPs integrate two or more cores onto a single
die with one or more private levels of cache memory, shared levels of cache memory,
shared memory links and memory controllers. This high level of resource sharing can
potentially create competition between executing threads that can in turn lead to severe
performance degradation [29]. On the software side, the slowdown in the single core
performance improvement has boosted multithreaded software implementation, leading
CMP computing platforms to be heavily populated by multiprogrammed multithreaded
(MPMT) workloads. This creates an interesting challenge for the operating system to op-
timize a number of critical metrics like throughput, fairness, energy/power consumption
and others, within a non-trivial hardware resource configuration.

There exist two established scheduling approaches that can be applied to MPMT
workloads: a) The Completely Fair Scheduler (CFS) [22] used in Linux, that targets fair-
ness in terms of equal waiting time per thread, irrespective of the parent application of
each thread. This is a sensible policy for desktop applications on single-core systems,
where the CPU is a scarce resource and interaction with human users is a top priority.
However, it does not seem an optimal fit for multicore/manycore systems and throughput-



sensitive applications. Additionally, CFS does not consider resource sharing effects and
is completely contention agnostic. b) The Gang scheduler [11], on the other hand, fo-
cuses on parallelism and schedules the threads of a parallel application simultaneously
on the available cores, in an attempt to minimize communication and synchronization
overheads, or lock contention [16]. Still, the Gang scheduler, similar to CFS, does not
consider contention over shared hardware resources like caches and memory links and,
thus, can suffer from performance degradation due to these factors.

A large number of research works has been devoted to alleviating the effects of re-
source contention using either the operating system [15,5,20,3,16], the data center re-
source manager [18,7,8], or the supercomputer scheduler [6]. Contention-aware schedul-
ing focuses on the minimization of execution interference and typically relies on some
kind of application classification derived from the utilization of resources or the ex-
plicit penalties under co-execution scenarios. Classifiers make use of a variety of ap-
plication features, ranging from simple, like the LLC miss rate [5] or memory link
bandwidth [3,20], to more elaborate, such as cache utilization patterns [27,17,13], con-
tentiousness and sensitivity [26], and wider combinations of execution features, which
are collected either online [16] or by application profiling [7] and analyzed with machine
learning or data mining techniques. Once the classification has finished, the scheduling
step may decide on a number of actions like node allocation in a cloud environment,
space partitioning (thread mapping), time quantum allocation, DVFS levels, memory
management policies, thread throttling and others, with the goal to maximize one or more
objectives such as throughput, fairness or power consumption.

Despite this heavy research effort towards contention-aware scheduling, the sched-
ulers of modern operating systems still remain contention agnostic. In our view, this is
due to the fact that the contention-handling module of the OS needs to have a set of
features not fully existing in prior work. In particular, we argue that a resource-aware
policy should: a) Be simple to facilitate integration with existing OS projects, but accu-
rate enough to identify the majority of contention situations. LLC miss rate and mem-
ory link bandwidth alone are unable to capture several interference scenarios as we dis-
cuss later on. b) Not rely on information that needs to be collected from compiler anal-
ysis (e.g. stack distance profiles [27]), additional hardware components [13], or execu-
tion information collected by heavy profiling and possible co-execution with behavior-
revealing microbenchmarks [7,10,18]. c) Incur low overheads both in the classification
and scheduling steps, relying on low complexity algorithms to support fast decisions in a
dynamic OS environment, where processes enter and leave the system, perform I/O and
exhibit execution phases with different behavior.

In this paper we propose a contention-aware policy suitable for integration into an
operating system, that achieves low contention effects and distributes them among pro-
cesses in a fair manner. Our policy relies on a simple classifier called SCN, that distin-
guishes between three application classes: Streaming applications, Cache intensive ap-
plications and applications restricting their work to the private parts of the hardware, and
thus participate in No contention situations. On top of SCN, we gradually build four col-
laborating scheduling techniques: a) the Thread Folding Technique (TFT) that halves the
cores assigned to each application; b) the Link and Cache-Aware (LCA) scheduler [12]
adapted to the SCN classification scheme, that avoids pairing highly competitive applica-
tions; c) the Fair On Progress (FOP) scheduler that compensates the applications suffer-
ing the most from contention by assigning them more time, thus efficiently distributing



degradation among all applications, and d) the Folding LCA (F-LCA), a combination of
all the above techniques aiming at improving both fairness and throughput without in-
creasing the complexity of state-of-the-art scheduling schemes. Our policies are imple-
mented in a user-space co-scheduling framework and applied to several scheduling sce-
narios with MPMT workloads on an 8-core CMP server. Our experimental results indi-
cate that F-LCA is able to improve fairness over CFS while, at the same time, improving
the average throughput, in some cases over 20%.

The rest of the paper is organized as follows: In Section 2 we define our scheduling
problem. Section 3 presents the SCN classification method. The proposed scheduling
strategies and the F-LCA scheduler are presented in Section 4. We compare F-LCA with
Linux CFS and research scheduling policies in Section 5. Section 6 discusses further
steps to incorporate our policy in a contention-aware OS scheduler and Section 7 presents
related work. Finally, conclusions and future work can be found in Section 8.

2. Scheduling threads on CMPs

A generic co-scheduling scenario involving MPMT workloads comprises n applications
(r1, ...,rn) containing ti threads each, that request to be executed on a CMP platform with
p processors, l memory links and c shared caches. This is a typical scenario for time-
shared desktop systems, cloud environments offered by oversubscribed data centers and
compute nodes in HPC systems.

As threads running on different cores try to access shared resources, they interfere
with each other leading to substantial performance degradation. Previous work has indi-
cated shared memory links and LLC as spots of contention [15,4,20,23]. Memory band-
width is a limited resource that can be easily exhausted when threads with high demands
on data stored in main memory are running simultaneously using the same memory link.
Moreover, an application’s activity in LLC may lead a co-runner application to suffer
from a large number of cache line evictions.

Contention-aware schedulers attempt to overcome contention by separating con-
tending threads in space, i.e. by assigning them on cores that do not have shared re-
sources, or in time, i.e. by scheduling them in different time slots. A special problem for
multithreaded applications is lock contention. Gang scheduling assigns all threads of an
application to be executed concurrently on different cores, minimizing the effects of lock
contention.

Regarding their objectives, contention-aware schedulers aim to improve the over-
all throughput, provide QoS or minimize power consumption, while the default Linux
scheduler (CFS) targets fairness based on the time each application is waiting to be ex-
ecuted. Although CFS is extremely fair on waiting time, it neglects fairness in terms of
throughput and, due to contention on shared resources, applications meet different levels
of slowdown. Our approach aims to improve the overall throughput and at the same time
achieve fairness by distributing co-execution penalties fairly.

2.1. Scheduling threads on a flat CMP architecture

To better clarify the potential of the proposed scheduling policies, we work on a simpli-
fied scheduling problem, where each one of multiple multithreaded programs employ a



number of threads equal to the available cores (ti = p). In the target architecture all cores
share a single LLC and memory link, i.e. l = c = 1. This simplification offers a clear
picture of how applications interact in a system where resource sharing is unavoidable.
In Section 6 we discuss how we these simplifications can be overcome.

We consider the following state-of-the art schedulers to address the aforementioned
problem:

Gang scheduler [11]: It schedules all p threads of each application in a single time slot
and circulates the applications in a round-robin fashion. This scheduler exposes each
application’s behavior when executed in isolation, although self-interference, i.e. inter-
ference between an application’s threads, may still occur.

Link bandwidth balance (LBB) scheduler [20,3]: It sorts applications by bandwidth con-
sumption and forms execution groups by selecting the first from the top and bottom of
the list, then the second from the top and bottom and so on. All threads of an application
are executed within the same time quantum.

LLC miss rate balance (LLC-MRB) scheduler [5,3]: Similar to the LBB scheduler but it
sorts the applications by their LLC miss rate.

Completely Fair Scheduler (CFS) [22]: Incorporated in the Linux kernel since version
2.6.23, it maintains a run queue for each processing core implemented as a red black tree
and treats every thread as an independent scheduling unit. CFS is contention unaware
and serves as the state-of-the-art scheduling baseline for desktop, cloud and HPC sys-
tems.

Link and Cache contention aware scheduler (LCA) [12]: LCA is based on a four class
classification method. A simple pairing algorithm prevents highly competitive applica-
tions from being co-scheduled.

3. SCN Application Classification

In this section we present our scheme that classifies applications based on their activities
on the two main shared resources, i.e. the memory link and the LLC. Our goal is to iden-
tify contention fast on both resources, relying solely on monitoring information that can
be collected during execution time from the existing monitoring facilities of modern pro-
cessors. Our scheme is named SCN after the three application classes that are identified
as described next and illustrated in Figure 1:

Class S (Streaming): Applications of this class have a stable data flow on all links
of the memory hierarchy. This class typically includes applications that exhibit one or
more of the following characteristics: they perform streaming memory accesses on data
sets that largely exceed the size of the LLC, and have either no or large reuse distances.
Although they fetch data on the entire space of the LLC due to their streaming nature,
they do not actually reuse them either because their access pattern does not recur to the
same data, or because they have been swept out of the cache. No level of cache memories
help S applications accelerate their execution. Thus, they tend to pollute all levels of the
cache hierarchy.
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Figure 1. Activity in application classes

Class C (Cache sensitive): Applications with high activity on the shared LLC. This
is a wide class including members with a combination of main memory accesses and
LLC data reuse and members with varying characteristics, such as those that operate on
small data sets with heavy reuse, optimized code for the LLC (e.g. via cache blocking
with a block size fitting the LLC), or latency-bound applications that make irregular data
accesses and benefit a lot from LLC hits.

Class N (No contention): Applications that restrict their activity either to the private
part of the memory hierarchy or within the core. The members of this class create no
contention on the shared system resources and include applications with heavy computa-
tions, very small working sets or optimized data reuse that can be serviced by the private
caches.

3.1. Classification method

Having defined the application classes, we need a concrete method to perform the clas-
sification using runtime information. The core idea is to inspect the data path from the
main memory down to the core to locate components with high utilization (Figure 2). We



have focused only on the stream flowing towards the core, as we have empirically found
that this direction concentrates the largest portion of contention.

Our classification method implements the decision tree shown in Figure 3. We follow
a hierarchical approach in the classification. First, we look at the application’s activity in
the L1 cache, i.e. data flowing into the L1 cache. No or low activity in L1 means that only
limited amount of data are fetched from the entire memory hierarchy, indicating that the
application’s activity is restrained within the core. Such applications are classified as N.

In the case of high activity, i.e. large amount of data are flowing towards the core,
we need to check whether they are reused. We define the reuse factor of cache level i as
the ratio CRi =

Bini−1
Bini

, where Bini the inbound bandwidth to cache level i consumed by
data flowing from higher levels of memory. The rationale is simple: if data flows out of
a cache towards the direction of the core with a much higher rate than it flows in, then
we can safely assume that reuse is present. We empirically set a threshold of CRi = 2 to
designate reuse.

If no reuse is detected, then the application has a streaming attitude and is classified
as S. On the other hand, if reuse is detected, the application class depends on the reuse
location. If reuse is higher in the private caches, then the application is classified as N;
otherwise, reuse is higher in the shared LLC and the application is classified as C.

The classification cost is very small. It comprises the collection of information from
the system’s performance counters (typically a few dozens of CPU cycles in modern
processors), the computation of the reuse factors (as many integer divisions as the levels
of the memory hierarchy) and the traversal of the decision tree that requires at most three
comparisons. Classification needs to take place whenever an application is entering the
system or it changes its execution phase. Although phase change detection [9] is beyond
the scope of this work, a change in the monitoring data could provide a hint of a possible
phase change. We intend to further investigate this aspect in future work. Finally, for a
safe classification, each application needs to be scheduled without any interference, i.e
by applying gang scheduling for a few time quanta (in our experimentation we utilized
two time quanta of 1 sec each). If there exist additional empty cores in the machine,

Figure 2. Inspected data flow in the memory hierarchy
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Figure 3. Decision tree for application classification

they could be employed by N class applications, since these will not interfere with the
application under classification.

3.2. Co-execution effects

Despite the fact that inside a class one may find applications with quite different ex-
ecution patterns, the classes themselves can be used to capture the big picture of how
applications access common resources and how they interfere with each other. We define
xy to be the co-execution of an application from class x with an application from class
y and we use ∗ as a wildcard for “any class”. Here is what we expect from all possible
co-execution pairs:

N – *: As applications from class N do not actively employ any shared resource, this
co-execution does not create interference to any of the applications.

S – S: Both applications compete for the memory link. The contention pattern in this case
indicates that the shared resource, the memory link bandwidth, is divided, not necessarily
equally, between the competing applications.

S – C: As S applications tend to pollute caches, a C application may suffer from the
co-execution with S applications. When S is fetching data with at a low rate, it may cause
little harm to C applications. If however, the data fetch rate is high, the co-execution
can be catastrophic for the C application. The streaming nature of S applications causes
data that might be heavily reused by C applications to be swept out of the shared cache
rapidly, enforcing them to access main memory. This contention pattern can lead to a
dramatic slowdown of C applications. On the other hand, S applications suffer no severe
penalty from co-execution.



C – C: The effects of this co-execution are difficult to predict. In general we expect cache
organization and replacement policies to be able to handle activity from different ap-
plications on the shared cache adequately. However, if both applications exhibit similar
data access patterns, contention is expected to be high. To look at more details and better
understand possible interactions and their effects, one should utilize information regard-
ing the data allocated to each application on the cache and its access pattern. This would
require either information from static analysis or additional hardware support, which are
both out of the scope of this work.
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Figure 4. Average application slowdown due to co-execution. Along the x axis we show the slowdown im-
posed by each class, and along the y axis we show the slowdown suffered.

To evaluate our scheme we used multithreaded applications from the NAS [2], poly-
bench 1, and stream benchmark suites [19], a pointer chasing benchmark 2 and two in-
house implementations of a tiled Matrix Multiplication and a tiled LU decomposition. All
applications were executed with Small, Medium and Large dataset sizes. More specif-
ically, small datasets were a lot smaller than the LLC; medium datasets were slightly
smaller than the LLC size, and Large were significantly larger than the LLC. Interest-
ingly, depending on the dataset size, an application may populate different classes.

We co-executed all the possible pairs, measured the time to completion for each ap-
plication and compared it to its standalone execution time. Figure 4 offers the general
picture of the co-execution scenarios at the class level, that generally confirms our previ-
ous analysis: S are the most competitive applications, C are the most sensitive and N do
not suffer from contention and do not cause any harm to their co-runners.

4. Scheduling policies for fairness and contention avoidance

Our approach towards a contention-aware scheduling module is composed of four steps.
We first examine a thread folding technique, where pairs of applications are executed
concurrently. Then, we discuss the LCA contention-aware scheduler, which is based on

1PolyBench: The Polyhedral Benchmark suite: http://www.cs.ucla.edu/~pouchet/software/

polybench
2pChase benchmark: https://github.com/maleadt/pChase

http://www.cs.ucla.edu/~pouchet/software/polybench
http://www.cs.ucla.edu/~pouchet/software/polybench
https://github.com/maleadt/pChase


the SCN classification and creates pairs of applications. The third step is a technique that
can distribute performance degradation fairly across the entire workload. Finally, F-LCA
is a scheduler that combines all the above techniques.

4.1. Thread Folding Technique – TFT

As mentioned before, a common practice for multithreaded applications is to request a
number of threads equal to the number of cores provided by the underlying hardware.
This practice however, is not always efficient and may lead to resource waste, as in
several cases maximum throughput can be attained with less threads.

When multiple multithreaded applications are running concurrently on the system,
there are two established scheduling approaches: the Gang scheduler and CFS. The
main advantage of the Gang scheduler is that it minimizes lock contention. However, it
turns out to be inefficient and waste resources for a large class of applications that fail
to scale to the maximum available cores because of intra-application contention (self-
interference). On the other hand, CFS does not necessarily execute all the threads of
an application at the same time, as it treats each thread as a separate scheduling unit.
Therefore, CFS may be more efficient by not wasting resources on applications exhibit-
ing intra-application contention, but on the other hand it can increase lock contention
degrading the performance of applications that would otherwise be able to scale.

Our approach is based on the observation that in a specific time window, the threads
of two multithreaded applications can utilize the exact same amount of cores either by
time or space sharing the system. In Figure 5a, the Gang scheduler enforces time sharing,
i.e. at each time quantum only the threads of a single application are scheduled and the
two applications are circulated in a round-robin fashion. In Figure 5b the cores assigned
to each application are now halved and both applications are scheduled every time quan-
tum. This thread folding technique (TFT) leads to pairs of threads from the same appli-
cation time sharing a core, while at each time quantum the two applications are space
sharing the system. In both cases, for a specific time window, an application is awarded
the same amount of cpu time. However, in the presence of both scalable and non-scalable
applications, we expect TFT to be more efficient than Gang scheduling, as it will be
able to accelerate non-scalable applications by alleviating their self-interference, while
imposing no harm to the scalable ones.

To validate this, we used an 8-core system (see Table 1) to execute each application
of our suite (see Table 2) in isolation, using eight threads per application. We initially
employ Gang scheduling; then, we rerun each application using TFT and restricting the
8 threads to only 4 cores. The first four threads run in a time quantum and the rest of
the threads run in the next one, while the other 4 cores remain always empty. Figure 6
presents the execution time using TFT normalized to the execution time using the Gang
scheduler. We use boxplots (Tukey boxplots) to present our experimental results for the
different application classes. For an explanation of this form of plots please refer to
Section 5.3.

It is evident that S applications do not suffer from folding, as they cannot scale to the
maximum available cores. On the other hand, N and the majority of C applications nearly
double their execution time when using half of the available cores. Based on these, when
we employ TFT instead of Gang for pairs of multithreaded applications, we expect lower
execution times for S and few C applications, as, due to space sharing, both applications
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Figure 5. Core allocations per time quantum for two 8-threaded applications on an 8-core system
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Figure 6. TFT vs full system execution time

are scheduled every time quantum instead of every other. Similarly, we expect N and the
majority of C applications to maintain almost the same execution time. Of course, the
execution times of the latter depend on the existence or not of contention created by a
competitive co-runner.

To evaluate TFT we executed the applications in pairs, with every pair running for
100 seconds. During this time, whenever an application terminated, it was re-spawned.
We define throughput as the number of times an application terminates within the time
window, normalize it to the throughput achieved by Gang scheduling, and present it in
Figure 7, side by side with the throughput obtained using CFS.

By folding the threads and space sharing the system, we manage to maintain and
in some cases improve the performance for the majority of the applications. The only
exception is, as expected, C when co-scheduled with S. In this case, the throughput of
many C applications is reduced as a consequence of the cache thrashing caused by the
S co-runner. On the other hand, CFS does not provide any similar improvements for S,
while still degrading the performance of many C applications. Moreover, while in TFT
the throughput of an N application is stable irrespective of its co-runner, when CFS is



used, its performance may degrade, as depicted by the boxes for the S-N, C-N and N-N
pairs.

In general, Figure 7 demonstrates that for MTMP workloads, TFT provides an ef-
fective scheduling mechanism for S and N applications. However, it can degrade the
performance of C applications, indicating that further improvements are required.
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4.2. Link and Cache Awareness (LCA) for contention avoidance

As contention for shared resources can impact the performance, a number of contention
aware schedulers have been proposed in the literature, most of which aim at separating
competitors in time or space. Most of the proposed policies try to avoid co-executing
memory bound applications and instead attempt to combine them with compute bound
ones [20,1]. Prior work [12] has shown that some classes are very competitive and their
coexistence should be avoided. We extend this work based on our SCN classification to
present a contention avoidance scheme. The core idea behind this scheme is to prevent C
and S applications from running at the same time under the same shared cache.

Algorithm 1. LCA co-scheduling algorithm
Input: S, C, N: lists of applications in classes S, C, N, respectively
foreach x in N do

y← popFromFirstNonEmpty(S,C,N) co-schedule(x,y)
end
foreach x in C do

y← popFromFirstNonEmpty(C) co-schedule(x,y)
end
foreach x in S do

y← popFrom(S) co-schedule(x,y)
end

The proposed algorithm, presented in Algorithm 1, is an adaptation of the Link and
Cache-Aware (LCA) algorithm to the SCN classification scheme. The popFromFirstNonEmpty



routine searches for the first available application in a collection of application lists,
scanning them in the order they appear in the argument list.

The algorithm is greedy with O(n) complexity and tries to form pairs in a predefined
order. It starts with N applications and pairs them with S, which cause the greatest harm.
When no more S can be found, it pairs them with C applications, which suffer the greatest
harm. When all the N have been scheduled, if more applications exist, the algorithm
proceeds pairing applications from the same class.

4.3. Fairness on Progress

On single core architectures or architectures where cores do not share any hardware,
fairness can be achieved by assigning to the applications equal time shares of the core(s).
On architectures, though, where cores are sharing resources, dividing time equally is
not sufficiently fair. As we have shown, contention on shared resources impacts each
application differently, depending both on its own characteristics and those of its co-
runners.

To evaluate the fairness achieved by the state-of-the-art Linux scheduler, we create
MPMT workloads by pairing the 8 threads of every application of our suite (see Table 2)
first with the 8 threads of Stream, then with the 8 threads of Jacobi and, finally, with the 8
threads of 3mm. These three applications were selected to create high contention scenar-
ios, as our characterization revealed that the former two are the most resource consuming
applications of class S, and the latter the most resource consuming application of class
C. The 16 threads of each pair are executed on our 8-core system (see Table 1) for a time
window of 5 secs using the CFS scheduler. Every time an application terminates inside
this window, it is restarted. We define throughput as the number of times an application
finishes and normalize it to the throughput achieved when running alone on the system.
Figure 8 reports the average normalized throughput of each application together with its
average running to waiting time ratio.
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It is obvious that CFS fulfills its goal; in our execution window, every application
gets almost the same cpu time and thus, fairness according to CFS is achieved. However,



being contention agnostic, CFS fails to treat all applications fairly in terms of achieved
progress. Despite all receiving equal shares of the cpu, some applications, like EP and
doitigen, progress at a similar pace to when running alone on the system, while others,
such as Jacobi and syrk, are severely affected by their co-runners and their performance
is halved.

Motivated by this observation, we present Fair on Progress (FOP), a simple and
effective scheduling strategy that aims at enabling all the applications to progress at a
similar pace. To accomplish this, the scheduler needs to disrupt CFS’s main characteristic
of fair cpu time and reward applications suffering from contention by granting them
higher time shares. For each application we define its Progress as the ratio:

Progress =
IPClast quantum

IPCstandalone

the Contention Penalty (CP) as:

CP = 1−Progress

and its Age as the sum:

Age =
WT

n ·T Q︸ ︷︷ ︸
ageing due to waiting

+ CP︸︷︷︸
ageing due to contention

where WT is its waiting time, n is the number of applications and T Q is the system’s time
quantum. An application matures in two ways: first, waiting for cpu resources, expressed
as their waiting time (WT ) normalized to a time period equal to n time quanta (n ·T Q);
second, suffering contention penalties which hinder its progress, expressed by the factor
1−Progress. Applications that suffer from resource contention will exhibit a CP close
to one, leading to a higher age compared to others that progress at a similar pace to
when running alone. Every time quantum, the scheduler selects the applications with the
highest age, thus rewarding applications that have fallen behind.

To evaluate FOP we executed the applications of our suite on our 8-core system us-
ing first FOP and then CFS for 2400 secs, restarting every application that terminated
inside this window. Figure 9 depicts the throughput normalized to standalone execution
for all the applications. As demonstrated by the box size and the distance between the
whiskers, when FOP is used, the variation between the progress of each application is
significantly smaller compared to when CFS is employed. Therefore, FOP achieves fair-
ness allowing all applications to progress at a similar pace.

An obvious shortcoming of FOP however, is that prioritizing applications whose
progress is hindered over applications running at full speed, leads to a total system
throughput degradation as demonstrated in Figure 9. This is primarily due to the fact
that granting more time slots to applications suffering from interference, increases the
possibility of interference itself, a fact that leads to an overall performance degradation.
In the next paragraph we present our approach to address this issue as well.
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Figure 9. Progress achieved when using FOP and CFS.

4.4. F-LCA: Putting it all together

This section presents Folding-Link and Cache Aware (F-LCA), our complete contention-
aware scheduling scheme. We base our approach on the potential of TFT to alleviate self-
contention and employ LCA to create pairs that avoid contention as much as possible.
To achieve fairness, we utilize FOP and reward applications that suffer from contention
with more running time.

However, as folding is likely to cause additional slowdowns, we extend F-LCA to
take the Folding Penalty (FP) into account as well. FP derives from the ratio of the IPC
of the folded application to the IPC of the original one as follows:

FP = 1−
IPC f olded

IPCstandalone

and extend Age as follows:

Age = w1 ·
WT

n ·T Q︸ ︷︷ ︸
ageing due to waiting

+ w2 ·CP︸︷︷︸
ageing due to contention

+ w3 ·FP︸︷︷︸
ageing due to folding

Ageing in the F-LCA scheme is a function of the waiting time of an application,
the slowdown incurred by contention and the penalty it suffers from folding. Our ageing
formula includes weighting factors (w1, w2, w3) to support the enforcement of different
priorities to the ageing components. To enforce equal priorities between CP and FP, we
set (w2,w3) = (1,2), since CP ∈ [0,1.0), but FP ∈ (0,0.5]. Note that in our model we
disregard applications that suffer from lock contention and consider that folding at most
doubles an application’s execution time (i.e. halves its IPC - hence FP∈ (0,0.5]). Finally
we set w1 = 1, to balance the three ageing factors fairly.

Whenever an application enters the system, our scheme executes it in isolation, clas-
sifies it and measures its IPCstandalone. It then folds the application, measures its IPC f olded
and calculates its FP. IPCstandalone, IPC f olded and FP are calculated only during this
characterization step and used subsequently for the scheduling decisions.



F-LCA sorts all applications by Age, and selects a constant subset of K applications
with the highest Age to be scheduled in the next epoch, i.e. K time quanta. The K appli-
cations are folded, paired using LCA and scheduled to the system. In our experimenta-
tion we have set K = 4 for workloads with more than four applications, and K = 2 for
workloads with less than four applications.

If the ready list of applications is maintained in a binary search tree (as CFS does us-
ing a Red-Black tree) keeping the applications sorted by age has a complexity of O(logn).
Applying LCA to a constant number of applications has a complexity of O(1), leading
to a total F-LCA complexity of O(logn), equal to that of CFS. Note, finally, that as our
ageing scheme incorporates waiting time, it guarantees starvation-free executions: even-
tually the waiting time of an application will dominate the CP and FP factors which are
bounded, leading to the selection of the application by the scheduler.

5. Evaluation

5.1. Experimental Platform

We performed our experimental evaluation on an Intel R⃝ Xeon R⃝ CPU E5-4620 (Sandy
Bridge) equipped with 8 cores, private L1 and L2, 16MB 16-way shared L3 and 64 GB
DDR3 @1333MHz (see Table 1 for details). The platform runs Debian Linux with kernel
3.7.10.

Cores 8

L1
Data cache: private, 32 KB, 8-way, 64 bytes block size

Instruction cache: private, 32 KB, 8-way, 64 bytes block size
L2 private, 256 KB, 8-way, 64 bytes block size
L3 shared, 16 MB, 16-way, 64 bytes block size

Memory 64 GB, DDR3, 1333 MHz
Table 1. Processor details

5.2. Experimental Setup

We implemented all our schedulers in user space using a pluggable infrastructure that
allows for different scheduling algorithms. We use the control group infrastructure pro-
vided by the Linux kernel to implement the scheduling decisions. Because the control
groups are inherited, our system can handle programs that create threads dynamically. In
particular, we implement space scheduling via the cpuset library3 that allows setting the
CPU affinity for program threads, and time scheduling via the freezer control group4 that
allows pausing and resuming the execution of a program’s threads. We compare F-LCA
in terms of throughput and fairness with the established Linux (CFS) and Gang sched-

3CPUSETS: Processor and Memory Placement for Linux 2.6 kernel based systems http://oss.sgi.com/
projects/cpusets/

4The freezer subsystem: https://www.kernel.org/doc/Documentation/cgroups/

freezer-subsystem.txt

http://oss.sgi.com/projects/cpusets/
http://oss.sgi.com/projects/cpusets/
https://www.kernel.org/doc/Documentation/cgroups/freezer-subsystem.txt
https://www.kernel.org/doc/Documentation/cgroups/freezer-subsystem.txt


ulers, and LBB, LLC-MRB and LCA proposed in literature (see Section 2). The folding
strategy is applied to LBB, LLC-MRB and LCA schedulers.

We implemented application profiling and execution monitoring using hardware
performance counters. The data collected was used to classify applications and de-
termine the applications’ IPC during execution. More specifically, we collected in-
formation from the counters UNHLT CORE CYCLES, INSTR RETIRED, LLC MISSES,

L1D.REPLACEMENT, L2 LINES.IN. Furthermore, we used OFFCORE REQUESTS (0xB7,

0x01; 0xBB, 0x01) together with Intel’s Performance Counter Monitor 5 utility to ac-
quire information regarding bandwidth usage.

Name Source IPC LLC miss rate Bin3=LLC Bin2 Bin1 CRLLC CRL2 Class
(×103 misses/sec) (MB/sec) (MB/sec) (MB/sec)

jacobi polybench 0.487 2514339 6227 4138 4024 1.50 1.03
stream [19] 0.664 85640 10627 10631 10411 1.00 1.02

S
gesummv polybench 0.486 34450 3374 2672 2542 1.26 1.05
trisolv polybench 0.438 25969 1462 1328 1112 1.10 1.19

gemver polybench 0.445 23039239 10333 8033 1777 1.29 4.52
mvt polybench 0.393 26906052 10193 8527 1539 1.20 5.54
syr2k polybench 1.934 2622111 24215 22513 2739 1.08 8.22
2mm polybench 0.363 11048673 25128 24838 74 1.01 335.65
3mm polybench 0.351 9503846 26719 26128 570 1.02 45.84

C
cholesky polybench 1.611 7957523 20872 27631 3 0.76 9210.33
gemm polybench 0.377 11858539 24234 23918 19 1.01 1258.84
syrk polybench 2.287 3615742 20930 20929 32 1.00 654.03
trmm polybench 2.165 5825980 20389 24623 1450 0.83 16.98
durbin polybench 0.347 9399687 4940 3725 442 1.33 8.43
gramschmidt polybench 0.219 77439222 16730 16652 0 1.00 -
ludcmp polybench 0.431 8359724 13205 2290 6 5.77 381.67
ft.A NAS 0.957 425496 20667 4131 1916 5.00 2.16

ep NAS 0.747 143659 959 978 10 0.98 97.80
N

doitgen polybench 1.429 72012 102081 334 224 305.63 1.49

Table 2. Application suite

To evaluate the various policies we created 30 different workloads, 15 four-
applications workloads and 15 eight-applications workloads. Workloads are divided into
mixes leading to low, medium and high contention and consist of a combination of the
19 applications of our benchmark suite shown in Table 2. We selected benchmarks from
various suites that exhibit a single phase throughout their execution. To avoid the ef-
fect of each workload having a different execution time, we define a time window, in
which every application that terminates starts again. This way, we are able to evaluate
the performance of the various schedulers while the system operates at full load. The
window length has been appropriately selected to allow even long running applications
to terminate at least around 10 times for every scheduler.

5.3. Results

We focus our evaluation on the critical metrics of throughput and fairness illustrated with
the use of Tukey boxplots. Boxplots represent statistical populations without making any

5Intel R⃝ Performance Counter Monitor - A better way to measure CPU utilization http://software.

intel.com/en-us/articles/intel-performance-counter-monitor

http://software.intel.com/en-us/articles/intel-performance-counter-monitor
http://software.intel.com/en-us/articles/intel-performance-counter-monitor


assumptions. The top and bottom of the box represent the first and the third quartiles, the
band inside the box is the median value and the end of the whiskers represent the lowest
datum still within 1.5 interquartile range (IQR) of the lower quartile and the correspond-
ing higher. Cycles above and under the whiskers are values outside the defined ranges
and square marks are the average values. To our data analysis shorter boxes represent
higher level of fairness as the distribution of the values is smaller. Higher median values
show better overall performance of the scheduling policy.

Figures 10 and 11 show the distribution of throughput for all workloads and sched-
ulers. In terms of average/median throughput, as a metric for performance, we observe
that F-LCA achieves the best performance in four out of six cases, and is very close to
the best performance which is obtained by Linux in the case of four workloads with high
contention.

In general, in low contention cases the throughput of all schedulers is lower than that
of the Gang scheduler. The Linux scheduler performs worse than Gang because of the
way it scatters threads on cores that can lead, as we observed, to more than two threads
of the same application time sharing the same core. On the other hand, F-LCA’s perfor-
mance is more stable and almost equal to that of the Gang scheduler. This is expected,
as contention-aware schedulers cannot really offer any significant benefits in low con-
tention scenarios. In cases of medium contention, F-LCA outperforms all other sched-
ulers, mainly due to its folding strategy. CFS performance is closer to that of Gang than
before, however F-LCA reaches a performance improvement of 20% over CFS.

Finally, in cases of high contention LCA, LBB, LLC-MRB achieve the same or
better overall throughput than both F-LCA and CFS. However, F-LCA is more stable
and for almost every workload performs better than the Gang scheduler, while for many
workloads all the other schedulers perform worse, failing to alleviate performance penal-
ties due to resource contention. In the most demanding case of workloads comprising
8 applications with high contention, CFS performs worse than the Gang scheduler for
almost all the different workloads, while F-LCA obtains around 30% better performance
than CFS and around 20% better than the Gang scheduler.

There are two more elaborate metrics of fairness we can utilize: a) the distribution
of throughput compared to gang scheduling, i.e. the distance between the maximum and
minimum points and the height of the boxes/whiskers; the lower these distances, the
higher the scheduler’s fairness; b) the distribution of co-execution penalty compared to
gang scheduling, focusing only on applications that were harmed. In this case we look at
the distance of the minimum points and low ends of the boxes/whiskers from 1.0 (gang
scheduling).

Considering both these metrics, F-LCA clearly outperforms all other schedulers in
terms of fairness. All schedulers have their best IQR under 10%. On the other hand,
F-LCA’s worst IQR is under 30% while all the others’ worst IQR exceeds 50%. More
specifically, for low contention cases both F-LCA and Linux schedulers are fair, while
LBB seems to be the most unfair. CFS is fair in scenarios with medium and high con-
tention for the 8 application workloads, because of the many co-execution variations that
exist. If there are few variations however, CFS fails to be fair.

Finally, LCA’s, LLB’s and LLC-MRB’s wide IQR are due to misclassifications that
occur and to the fact that pairs are statically determined at the start of the scheduling.
Therefore, a pair exhibiting high contention, once created by these schedulers, is used for
the entire execution. This can be very unfair to a sensitive application. On the other hand,
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Figure 10. Throughput normalized to Gang scheduler for four application workloads.
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Figure 11. Throughput normalized to Gang scheduler for eight application workloads.



F-LCA, using the FOP mechanism, manages to deal with possible misclassifications as
it dynamically creates pairs depending on each application age and hence progress.

6. Discussion – Towards a complete, OS-level, contention-aware scheduler

The F-LCA scheduling approach presented in this work focuses on the core mechanisms
and policies that need to be incorporated in a contention-aware module that will operate
in the context of a complete scheduling framework. To this direction, we discuss a num-
ber of issues that need to be further addressed by the collaboration of F-LCA with the
OS scheduler:

Dynamic behavior of applications In a real execution environment applications may
enter/leave the system at any time, perform I/O operations, or change their execution
phase. One of the key design principles of F-LCA is to be fast both in its classification
and scheduling steps in order to minimize the additional overheads when invoked under
these conditions. Application spawn and exit is a trivial action for the operating system
and F-LCA requires no additional modifications other than updating the relevant data
structures. The same holds for the case of I/O operations that trigger the operating sys-
tem, thus enabling straightforward management. However, as F-LCA does not target I/O
intensive applications, once such an application is recognized (e.g. by exceeding a num-
ber of I/O operations within a time window) it could be excluded from the F-LCA policy
and assigned to an accompanying scheduling module for I/O intensive applications. Such
module needs to collaborate with F-LCA to share system resources.

Phase change is also a significant aspect in contention-aware scheduling. Although
phase change detection [9] is orthogonal and beyond the scope of our work, F-LCA
collects a lot of monitoring information like IPC and traffic within the memory hierarchy
that could be utilized to identify potential phase changes. We leave this for future work.
However, a simple and straightforward solution for our scheme, would be to re-classify
an application, whenever a phase change is recognized.

Lock contention F-LCA targets contention in shared hardware resources like caches
and memory links. However, lock contention has also been identified as a source of per-
formance degradation for multithreaded applications that need to synchronize frequently.
Gang scheduling has been proposed exactly for this reason. Our scheme needs to exclude
applications that suffer from lock contention and resort to gang scheduling for them. Dur-
ing characterization, such applications can be easily identified as their folding penalty
(FP) will be significantly higher than 2.

Richer memory hierarchies We have applied F-LCA on architectures where all cores
share a single memory link and LLC. However, wide CMP systems, especially servers,
are based on deeper and more complex memory hierarchies with several CPUs, memory
links, NUMA organization and different cache sharings. In this case, F-LCA needs to
operate in an hierarchical mode, with separate F-LCA modules closely collaborating.
Our classification and scheduling approach can be easily applied to applications both
space and time sharing NUMA/cache islands. Modification of F-LCA for richer memory
hierarchies is left for future work.



Arbitrary number of threads per application In this paper we worked under the as-
sumption that all applications request a number of threads equal to the number of CPU
cores. Although this is the case for several applications, for a scheduling framework to
be generic, we need to address the case of arbitrary numbers of application threads. The
challenge in this case is to keep the complexity of the scheduling algorithm low, as pack-
ing arbitrary numbers of threads to fill the CPU cores may be based on algorithms that
well exceed our current O(logn) complexity. However, our simple and effective classifi-
cation scheme can come to the rescue for this case as well. We can easily apply a num-
ber of simple techniques like building groups of residual threads with non-conflicting
behaviors to form a scheduling entity for F-LCA, or reuse N applications to fill empty
cores.

7. Related work

Resource-aware scheduling has been addressed in several contexts such as HPC systems
[6] and data centers or cloud environments [18,25,7]. In this paper we focus on resource-
aware scheduling for CMPs, where contrary to data center schedulers that are able to
apply extensive profiling on the submitted applications to characterize them and take
allocation decisions [18,7], actions need to be taken fast, on the fly, without the use of
any external behavior-revealing microbenchmarks.

In this context, contention on shared caches was identified as a source of per-
formance degradation early at the adoption of CMP systems, where elaborate hard-
ware management mechanisms were proposed (e.g. replacement and partitioning poli-
cies [14,24,21]). However, as hardware approaches focus on the shared cache only, they
are unable to alleviate resource contention on other resources, such as the shared mem-
ory link which can also be a source of severe performance degradation [29]. However, as
modern processors are starting to include mechanisms for cache partitioning exposed to
the software layers, we intend to incorporate such mechanisms as an additional action to
our scheduling approach.

Software co-scheduling approaches have been proposed to handle contention in a
more flexible way. Contention-aware mechanisms typically rely on a classification of the
application execution behavior and a relevant prediction of the interference when two or
more applications are co-executed under a resource sharing scenario. Initially, the shared
cache utilization pattern was the one that received the most intense study. Xie and Loh
[27] proposed an animal classification approach, where an application may belong to
one of four classes named turtles, sheep, rabbits and tasmanian devils. Applications that
do not make much use of the last level cache are called turtles. The ones that are not
sensitive to the number of ways allocated to them but make use of the LLC belong to
the sheep group. Rabbits are very sensitive to the ways allocated to them. Finally, devils
make heavy use of the LLC while having very high miss rates. Targeting efficient cache
partitioning, Lin et al. [17] worked on a scheme to allocate the LLC between two pro-
grams by cache coloring. Their program classification uses four classes (colors) and is
based on program performance degradation when running on 1MB cache compared to
running on 4MB cache. Programs belonging to the red class suffer a performance degra-
dation greater than 20%. Yellow applications suffered a performance degradation from
5% to 20%. Programs with less than 5% degradation were further classified as green or



black according to their number of misses per thousand cycles. Jaleel et al. [13] proposed
a categorization scheme that employs the following application categories: Core Cache
Fitting (CCF) have a dataset size fitting in the lower levels of the memory organization
and do not benefit from the shared level of cache. LLC Thrashing (LLCT) have a data
set larger than the available LLC; under LRU, these applications harm performance of
any co-running application that benefits from the LLC usage. LLC Fitting (LLCF) ap-
plications require almost the entire LLC; their performance is reduced if there is cache
thrashing. Finally, LLC Friendly (LLCFR) applications, though they gain in performance
from the available cache resources, they do not suffer significantly when these resources
are reduced. Although the aforementioned classification schemes may provide an elabo-
rate view on the application’s utilization of the shared cache, they suffer from two severe
shortcomings: first, as mentioned above, they do not capture the entire contention picture
as contention may arise in different resources than the LLC, and second they require in-
formation that needs to be collected from static analysis (e.g. memory reuse patterns of
applications known as stack distance profiles, or comparison of execution with different
cache sizes) or from additional hardware.

Prior works on contention-aware scheduling classify memory-intensive applications
using the LLC miss rate [5,28,3,16]. Blagodurov et al. [5] show that, despite its sim-
plicity, the LLC miss rate can be more accurate than more elaborate cache contention
classification schemes. Merkel et al. [20] use the memory bandwidth as a metric to quan-
tify memory intensity. Contentiousness and sensitivity [26] are two insightful metrics
to quantify the penalty imposed and suffered by application in co-execution. Tang et al.
[26] calculate contentiousness and sensitivity by considering LLC resource usage, link
bandwidth and prefetching traffic which are fed to a linear regression model to calcu-
late proper parameters. By considering wider activity than sole bandwidth or miss rates,
this scheme is able to better capture application interference. Our classification scheme
builds upon this idea and extends the inspection area from the main memory down to the
compute core. A number of contention-aware co-schedulers have been proposed based
on the aforementioned classification schemes. The Distributed Intensity Online (DIO)
[5] and its variation for NUMA systems Distributed Intensity NUMA Online (DINO) [4]
schedulers monitor the LLC miss rate and balance memory intensity by space scheduling
applications to different LLC and memory links. This framework considers a total num-
ber of threads that is equal to or smaller than the available cores, and does not handle the
general scheduling scenario discussed in Section 2. The LLC-MRB scheduler uses the
notion of balancing the LLC misses in the scheduling problem addressed in this paper.

Bhadauria and McKee present two resource-aware scheduling schemes [3] focus-
ing on the optimization of Energy-Delay products. Their schedulers aim to decide upon
the number of threads for each application together with the coexistence of applications
within the same time slot (quantum). Although they account for resource balance, con-
tention avoidance is not central to their approach. In their first scheme (named FAIR),
they try to balance resource requests of the co-scheduled applications in terms of ei-
ther LLC cache miss rate (hits/misses - named FAIRMIS) or bus occupancy (named
FAIRCOM) together with setting an efficient concurrency level. Their second scheme, a
greedy scheduler, profiles the applications to get their most energy-efficient thread counts
and schedules them using a bin-packing heuristic to maximize average system through-
put in a resource-oblivious manner. The LLC-MRB and LBB schedulers used for our
evaluation purposes use the notion of LLC miss rate balance and link bandwidth balance.



Merkel et al. [20] propose explicitly the LBB scheduler. The authors recognize the
need to handle multiple resource contention points and employ the concept of task ac-
tivity vectors for characterizing applications by resource utilization. They base their co-
scheduling policies on the selection of applications that use complementary resources
(sorted co-scheduling). In their implementation, however, they focus on one resource
only (memory bandwidth) that is assumed to be mainly responsible for contention. The
authors discuss that the scheme can be extended to adapt to the hardware and workload’s
characteristics by focusing on a different contention point each time. Our scheme, on
the other hand, is able to handle different contention points at the granularity of a time
quantum by avoiding potential contention in the LLC and memory link.

Pusukuri et al. [16] present ADAPT, a resource-aware co-scheduling framework that
considers overheads due to memory contention, lock contention and thread latency. They
characterize memory-intensive applications by their LLC miss rate. Their approach dis-
tributes space to applications based on a number of core preconfigurations. Multithreaded
applications either enter a single group of space scheduling or are allocated the entire
system. To this extent, although the approach can handle a total number of threads higher
than the total number of cores, it cannot be extended in a straightforward way to address
the general co-scheduling scenario. In our approach, we deal with hardware resource and
lock contention separately and consider gang scheduling as a mechanism to handle lock
contention.

8. Conclusion and future work

In this paper we presented F-LCA, a contention-aware scheduling policy for CMP sys-
tems that targets system throughput and application fairness. Our approach is based on
a classification scheme that detects activity and possible interference across the entire
memory hierarchy and relies on information that can be collected at runtime with no ad-
ditional hardware support. We have implemented our scheduler at user level and evalu-
ated our policy on several scenarios with different contention levels employing a variety
of multiprogrammed workloads. Our experimental results demonstrate that the proposed
scheduling method outperforms both the established Linux and Gang schedulers as well
as a number of research contention-aware schedulers, both in terms of system throughput
and application fairness.

As future work we intend to extend our scheduling scheme towards a complete
OS level framework working in the following directions: a) expand our scheduling ap-
proaches to handle more complex scheduling problems with multiphased applications
and I/O, b) extend our scheme to architectures with richer memory hierarchies, c) utilize
the cache partitioning mechanisms of modern processors and d) augment our objectives
with power and energy.
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