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Abstract—CPU-based inference can be deployed as an al-
ternative to off-chip accelerators. In this context, emerging
vector architectures are a promising option, owing to their
high efficiency. Yet the large design space of convolutional
algorithms and hardware implementations makes the selection
of design options challenging. In this paper, we present our
ongoing research into co-designing future vector architectures
for CPU-based Convolutional Neural Networks (CNN) inference
focusing on the im2col+GEMM and Winograd kernels. Using
the Gem5 simulator we explore the impact of several hardware
microarchitectural features including (i) vector lanes, (ii) vector
lengths, (iii) cache sizes, and (iv) options for integrating the vector
unit into the CPU pipeline. In the context of im2col+GEMM, we
study the impact of several BLIS-like algorithmic optimizations
such as (1) utilization of vector registers, (2) loop unrolling,
(3) loop reorder, (4) manual vectorization, (5) prefetching, and
(6) packing of matrices, on the RISC-V Vector Extension and
ARM-SVE ISAs. We use the YOLOv3 and VGG16 network
models for our evaluation. Our co-design study shows that
BLIS-like optimizations are not beneficial to all types of vector
microarchitectures. We additionally demonstrate that longer
vector lengths (of at least 8192 bits) and larger caches (of 256MB)
can boost performance by 5×, with our optimized CNN kernels,
compared to a vector length of 512-bit and 1MB of L2 cache.
In the context of Winograd, we present our novel approach of
inter-tile parallelization across the input/output channels by using
8×8 tiles per channel to vectorize the algorithm on vector length
agnostic (VLA) architectures. Our method exploits longer vector
lengths and offers high memory reuse, resulting in performance
improvement of up to 2.4× for non-strided convolutional layers
with 3×3 kernel size, compared to our optimized im2col+GEMM
approach on the Fujitsu A64FX processor. Our co-design study
furthermore reveals that Winograd requires smaller cache sizes
(up to 64MB) compared to im2col+GEMM.

Index Terms—CNNs, GEMM, Winograd, long vector architec-
tures, vector-length agnostic ISAs, co-design, optimizations

I. INTRODUCTION

Inference via Convolutional Neural Networks (CNNs) is
used in many Artificial Intelligence applications such as object
detection [1], natural language processing [2] and speech
recognition [3]. Most CNN-based object detection network
models work with a tight response-time limit and have high
and increasing computation costs [4]–[6]. Additionally, these
models often operate under tight power constraints, e.g.
battery power in embedded systems [7], or power caps in
datacenters [8]. Therefore, highly accurate real-time CNNs
require highly optimized kernels, running on energy-efficient
architectures with large computational capacity.

The popular approach for CNN inference, adopted by many
frameworks [6], [9], [10] is to offload the compute-intensive

kernels to GPUs [11]–[13]. Specialized neural accelerators
also exist [14], [15], but their integration in the general-
purpose computing stack is challenging. Nevertheless, many
use cases require availability, low-latency, or portability [16]–
[18], and therefore benefit from executing deep neural net-
works (DNNs) on tightly integrated systems. Consequently,
many works target software optimization of CNN inference on
CPUs [18]–[20], while CPU vendors increasingly add DNN
capabilities to processors [21].

In this aspect, vector processors play a leading role [22].
Contemporary vector architectures, such as ARM-SVE [23]
and the RISC-V Vector extension (RISC-VV) [24] specify a
maximum length of vector registers and allow the usage of
different vector lengths. These vector-length agnostic (VLA)
Instruction Set Architecture (ISAs) facilitate code portability
across iterations of the same machine with different vector
lengths.

The effectiveness of vector processors depends on
algorithmic optimizations and the hardware design. First,
given the limited compiler’s ability to perform transformations
during auto-vectorization [25], manual transformations and
optimizations to expose the available SIMD parallelism
to the vector processing units are key to achieving high
performance on vector architectures. Second, modern
architectures can combine very long vector units, more
on-chip vector parallelism and large caches. Tuning the
micro-architectural parameters to the requirements of the
vectorized and optimized kernels is integral to the design of
high-performing, efficient vector architectures.

Existing work on CNN inference on vector architectures
focuses either on applying algorithmic optimizations [26]–[29]
or on tuning the hardware micro-architectural parameters [30]–
[32]. We identify the absence of a combined study as a missed
opportunity to uncover algorithmic and architectural trade-
offs in the performance of CNN kernels running on vector
architectures. In this work, we bridge this gap with a co-
design study that performs a joint exploration of the design
space of vector architectures and the optimization space of
CNNs, aiming to provide guidance to programmers, hardware
designers, and compiler developers.

This paper studies the interplay between algorithmic opti-
mizations and micro-architectural parameter choices, demon-
strating the trade-offs in co-designing CNNs and vector archi-
tectures. For our co-design study, we vectorize all the kernels
of the convolutional layer from the Darknet framework [6]



on the RISC-VV and ARM-SVE architectures, using high-
level intrinsics of the respective ISAs. We then optimize
GEMM, the most time-consuming kernel, using various BLIS-
like [33] techniques to reduce the pressure on the memory-
subsystem, enforce contiguous memory accesses, and maxi-
mize the utilization of vector registers. We additionally op-
timize the Winograd algorithm from NNPACK [34], with
VLA vectorization on ARM-SVE, proposing a novel, inter-tile
parallelism scheme. We then use the gem5 [35] simulator to
assess the impact of tuning hardware parameters such as vector
lengths, vector lanes and L2 cache sizes, on the optimized
kernels. We consequently also assess the impact of integrating
vector units tightly to the core, in the case of ARM-SVE,
or as a decoupled vector architecture, in the case of RISC-
VV. Finally, we evaluate the performance of Winograd as an
algorithmic replacement for im2col+GEMM.

In summary, we make the following contributions:
1) We demonstrate that not all algorithmic optimizations

are beneficial to all different vector architectures, due
to traits of their micro-architectural design. To the best
of our knowledge, this is the first work that shows the
impact of different algorithmic optimizations with CNN
kernels on the ARM-SVE and RISC-VV ISAs.

2) We characterize the impact of hardware parameters
on convolutional layers with im2col+GEMM, showing
that longer vectors can improve the performance by
up to 2.5×, and larger caches can further improve
performance by up to 1.9× (i.e., a total of almost 5×),
when compared to a 512-bit long vector architecture
with 1MB of L2 cache.

3) We present a novel, vectorized implementation of
Winograd with ARM-SVE in a VLA manner, offering
up to 1.35× and 1.5× higher performance with the
YOLOv3 and VGG16 network models respectively,
compared to im2col+GEMM, on a single core of
A64FX. To the best of our knowledge, this is the first
implementation of Winograd utilizing long vectors
(up to 2048 bits). Moreover, our co-design study on
ARM-SVE shows that Winograd is less sensitive to the
L2 cache size compared to im2col+GEMM.

The rest of this paper is organized as follows. Section II offers
background on vector architectures and CNNs. Section III
presents our experimental platforms and setup. Section IV
describes the algorithmic transformations and optimizations
on the most-time consuming kernels of the convolutional
layer, namely im2col+gemm and Winograd. Section V details
the hardware parameters we consider in our co-design study.
Section VI presents our co-design study on the RISC-VV and
ARM-SVE architectures. Section VII evaluates the Winograd
kernel and Section IX concludes the paper.

II. BACKGROUND

A. Vector Architectures

Although long vector lengths were used in supercomputers
in the past [36], and short vectors later became popular

in general-purpose architectures [37], [38], the high energy
efficiency and scalable vector length of vector architectures
have led to renewed interest in High-Performance Computing.
While SIMD instruction set architectures with a fixed short
vector length are available and commonly used for general
purpose computing, introducing longer vector lengths requires
a new ISA extension, limiting portability. To overcome this
limitation, modern architectures such as RISC-VV [39] and
ARM-SVE [23] offer vector length agnostic (VLA) ISAs that
are portable across different hardware vector lengths.

a) RISC-V Vector Extension (RISC-VV): This is the
vector extension of the RISC-V Architecture, with 32 vector
registers and a maximum supported vector length (MVL) of
16384 bits. Different vector lengths (vlen) in powers of two,
not exceeding the MVL (maximum vector length), can be used.
A vector instruction vsetvl determines the granted vector
length (gvl) at runtime, using the requested vector length (rvl)
in elements and the element width in bits (sew) as input. RISC-
VV also supports strided-access, gather-load and scatter-store
vector operations.

b) ARM Scalable Vector Extension (ARM-SVE): This is
the vector extension of the ARMv8 architecture. The ARM-
SVE ISA operates on 32 vector registers and 16 predicate
registers. The supported MVL is 2048 bits, allowing to use
different vector lengths at runtime, from 128-bit to 2048-bit in
increments of 128-bits. Predicate registers are used for per-lane
predication, where elements with active lanes get processed
and inactive lanes either update the destination or leave the
destination unchanged. For the scalar loop tail, ARM-SVE
uses loop predication by masking out vector elements and by
processing partial vectors. ARM-SVE also provides gather-
load and scatter-store vector instructions.

B. Convolutional network models

Convolutional neural networks are implemented in multiple
deep learning frameworks. In this work, we focus on Darknet
[40], an open-source neural network framework written in
C and CUDA. It supports many pre-trained convolutional
network models for inference in various applications, such
as object detection and image classification. These network
models consist of different types of layers, but the computa-
tionally dominant layer is the convolutional layer. In Darknet, a
convolutional layer is built from the functions GEMM, im2col,
fill_cpu, copy_cpu, normalize_cpu, add_bias,
scale_bias and activate_array.

a) CNNs for object detection and image classification: A
popular CNN for object detection is YOLOv3, which features
107 layers of five different types, out of which 75 layers are
convolutional. A variant for the same task is YOLOv3-tiny,
which features 23 layers, out of which 13 are convolutional.
VGG16 is an image classification CNN. VGG16 includes 25
layers, out of which 13 are convolutional and 3 are fully-
connected layers. The fully connected layers also use compute
intensive kernels similar to convolutional layers.

b) Execution time breakdown for CNN inference: We
profile the execution time of different kernels in the YOLOv3



TABLE I: Hardware Platforms
RISC-VV ARM-SVE A64FX
@gem5 @gem5

ISA RISC-VV v0.8 ARM v8.2+sve ARM v8.2+sve
Processor in-order in-order out-of-order

Clock Rate 2GHz 2GHz 2GHz
L1 Cache size 64kB, 4-way 64kB,4-way 64kB,4-way
L2 Cache size 1MB, 8-way 1MB, 8way 8-MB, 16-way
Cache line size 64B 64B 256B

Prefetching No No Yes
Vector Length upto 16384-bit up to 2048-bit 512-bit
Vector Lanes upto 8 proportional not configurable

to vector length

network model, compiled with clang on the A64FX system
(see Section III for details) and collect measurements using
Linux perf. Approximately 92% of the total execution time is
spent on computation for inference, while the remaining 8% is
used for setting up the network model. We exclude the time for
setup, as it occurs only once, and calculate the percentage of
time spent on each kernel with respect to the total computation
time. The convolutional layer dominates execution, with GEMM
consuming 93.4% of the computation time.

c) Convolutional layer implementations: Our profiling
results show that the convolutional layer is the main building
block of CNN network models. In Darknet, this layer is
implemented using the im2col+GEMM algorithm, which is
also the dominant kernel. We focus on the optimization of the
generic im2col+GEMM algorithm, however, a convolutional
layer can be implemented with multiple algorithms, as no
”one-size-fits-all” strategy exists [41]: Winograd [42] works
best with convolutional layers with 3×3 or 5×5 kernel sizes
[43], FFT works best for layers with large kernel sizes, while
the Direct algorithm is better for 1×1 kernels. We therefore
also optimize the Winograd algorithm of the NNPACK [34]
package implementation, as in CNN-based network models
most of the network models have convolutional layers with
kernel sizes of 1×1, 3×3 or 5×5 [44].

III. METHODOLOGY

A. Hardware platforms

Our experimental analysis focuses on the RISC-VV and
ARM-SVE architectures. For the exploration of hardware
parameters, we simulate both architectures with gem5 [35],
a cycle-accurate simulator that models the core pipeline,
providing accurate timing predictions. For ARM-SVE, we use
the Fujitsu A64FX processor that implements the ARMv8-
SVE architecture, to evaluate our algorithmic optimizations.

The specifics of the hardware platforms used for our exper-
iments are described in Table I. We note that A64FX has 2
SIMD units, and the vector lengths are not reconfigurable, as
this is an actual processor. We use a RISC-V fork of gem5 [30]
and the public version of the gem5 simulator [45] with support
for modeling vector architectures, for RISC-VV and ARM-
SVE, respectively, in system call emulation (SE) mode. We
configure gem5 with the in-order “MinorCPU” CPU model,
with a frequency of 2GHz for the CPU and vector processor
unit (VPU). The memory subsystem is configured with two

levels of the data cache. We note that in RISC-VV@gem5, the
VPU is connected to the L2 cache. A small VectorCache buffer
of 2KB is used, through which the VPU reads and writes data
from/to the L2 cache. However, on ARM-SVE@gem5, data
for vector registers is accessed through the L1 cache itself.

B. Experimental setup
We evaluate the YOLOv3 network models from the Darknet

framework on a 768 × 576 pixels input image. To compile the
models, we use the EPI fork of the LLVM clang [46] cross-
compiler v12.0.0 for RISC-VV, LLVM armclang v20.3 [47]
for ARM-SVE@A64FX, and GCC cross-compiler version
10.2 for ARM-SVE@gem5. For both RISC-VV and ARM-
SVE, we use the -O3 optimization flag. To collect baseline
results, we use the -fno-vectorize compiler flag in
both compilers. Note that the baseline implementation of the
network models in Darknet does not include any manual
vectorization. The versions of Darknet with our vectorized and
optimized kernel implementations for ARM-SVE and RISC-
VV are open-source and publicly available 1 2.

To analyze the impact of the vector lengths, we vary the
vector lengths in both simulated architectures from 512 bits up
to 2048 bits on ARM-SVE and up to 16384 bits on RISC-VV,
in powers of 2. To analyze the impact of on-chip parallelism
on RISC-VV, we vary the number of vector lanes from 2 up
to 8. To analyze the impact of cache parameters, we increase
the L2 cache size on both simulated architectures from 1MB
up to 256MB. We calculate the L2 cache latency using the
latency of AMD Zen2 L2 [48] (12 cycles @ 7nm tech) and
extrapolating it to a cache size of 1MB, using the CACTI
tool [49], resulting in a latency of 12 cycles.

To collect time measurements, we perform 100 repetitions
for all experiments on A64FX, ensuring that the 95% confi-
dence interval of the mean falls within 5% of the mean.

IV. ALGORITHMIC OPTIMIZATIONS

In this section, we focus on the algorithmic optimizations
for im2col+GEMM for the convolutional layer. We addition-
ally describe the optimization of the Winograd implementation
of convolutional layers.

A. im2col+GEMM optimizations
To maximize the attainable performance, we begin by

vectorizing all kernels of the convolutional layer in Darknet
with low-level intrinsic instructions of the respective ISAs on
each of our experimental platforms. However, as discussed
in Section II, GEMM is the most time consuming kernel, and
aside from vectorization, manual optimizations are necessary
to extract the maximum parallelism out of im2col+GEMM.

Assuming a convolutional layer with a k × k kernel size,
on an input image of dimensions h × w × c, where h, w, c
are the height, width, and number of channels respectively,
for n number of filters, GEMM takes as input a weight matrix
M × K, and an input matrix K × N , where M = n, K =
k × k × c, and N = h× w.

1https://github.com/chalmers-hart/Darknet-ARM-SVE.git
2https://github.com/chalmers-hart/Darknet-RISCVV.git

https://github.com/chalmers-hart/Darknet-ARM-SVE.git
https://github.com/chalmers-hart/Darknet-RISCVV.git


1: i← 0 , j ← 0, k ← 0
2: for i← 0, i < M , i++ do
3: for k ← 0, k < K, k ++ do
4: tmp = alpha * A[i, k]
5: for j ← 0, j < N , j+ = 1 do
6: C[i, j] += tmp * B[k, j]
7: end for
8: end for
9: end for

Fig. 1: Naive implementation of GEMM

1: i← 0 , j ← 0, k ← 0
2: long int gvl;
3: for j ← 0, j < N do
4: gvl← vsetvl(N − j) //compute ’granted vector length’
5: for i← 0, i < M , i+ = U do //U is unrollfactor
6: V C[i : i+ U ]← C[i : i+ U, j : j + gvl]
7: for k ← 0, k < K, k ++ do
8: V B ← B[k, j : j + gvl]
9: for it← 0, it < U , it++ do

10: tmp = alpha × A[it, k]
11: V tmp← tmp //broadcast
12: V C[it]← vfmacc (V C[it],V tmp, V B, gvl)
13: end for
14: end for
15: C[i : i+ U, j : j + gvl]← V C[i : i+ U ]
16: end for
17: j+ = gvl
18: end for

Fig. 2: Optimized 3-loop implementation of GEMM

Fig. 1 shows the pseudocode for the naive implementation
of GEMM (C = alpha · A · B + beta · C), as implemented
in Darknet. In the pseudo code, A (M × K) represents the
weight matrix, B (K ×N ) represents the input matrix and C
(M ×N ) represents the output matrix.

To optimize GEMM, we follow two approaches. The first
approach optimizes the 3-loop implementation, depicted in
Fig. 2. The second approach tiles the matrices, resulting in
a 6-loop implementation depicted in Fig. 3, where we apply
optimizations.

We apply the following optimization to the 3-loop imple-
mentation: i) vectorization with intrinsic instructions ii) con-
tiguous memory loads/stores to/from vector registers, iii) loop
reorder, and iv) loop unrolling. Loop reordering reduces the
pressure on the memory subsystem by maximizing the reuse of
the vector registers. Loop unrolling hides the pipeline latency
by maximizing the vector register utilization and increasing
the parallelism in the algorithm.

Figure 2 shows the pseudocode for the optimized 3-loop
implementation of the GEMM kernel. In this algorithm,
we use the jik loop order, and we unroll the intermediate
loop j to reuse the vector data of matrix B by performing
U (unrollfactor) times dot products with different A matrix
elements. The loop in line 3 is incremented by the vector
length gvl to take advantage of VLA and the loop in line
5 is incremented by U to take advantage of loop unrolling.
Loops are reordered to reuse the loaded vector data as much as
possible. Low level intrinsics are used to manually vectorize
the algorithm. For RISC-VV, the vector length is calculated

1: i← 0 , j ← 0, k ← 0
2: long int gvl;
3: for j1← 0, j1 < N , j1+ = blockN do
4: for k1← 0, k1 < K, k1+ = blockK do
5: Pack MatrixB
6: for i1← 0, i1 < M , i1+ = blockM do
7: Pack MatrixA
8: for j ← 0, j < blockN , do
9: gvl← vsetvl(blockN − j)

10: for i← 0, i < blockM , i+ = U do
11: Prefetch block of C matrix into L1 cache
12: Prefetch packedA matrix into L2 cache
13: Prefetch packedB matrix into L2 cache
14: V C[i : i+ U ]← C[i : i+ U, j : j + gvl]
15: for k ← 0, k < blockK, k ++ do
16: Prefetch packed B matrix into L1 cache
17: Prefetch packed A matrix into L1 cache
18: V B ← packedB[k, j : j + gvl]
19: for it← 0, it < U , it++ do
20: tmp = alpha × packedA[it, k]
21: V tmp← tmp //broadcast
22: V C[it]← vfmacc (V C[it],V tmp,V B,gvl)
23: end for
24: end for
25: C[i : i+ U, j : j + gvl]← V C[i : i+ U ]
26: end for
27: j+ = gvl
28: end for
29: end for
30: end for
31: end for

Fig. 3: Optimized 6-loop implementation of GEMM

using the vsetvl intrinsic instruction. Once matrices are
loaded to the vector registers (V B, V C, V tmp), we use a
fused multiply-add vector intrinsic vfmacc to calculate the
multiplication and addition for the intermediate resultant ma-
trix V C. V tmp, a scalar value broadcasted to the vector
register, is passed as the second parameter to the vfmacc
intrinsic. The compiler internally uses vector-scalar multiply-
add intrinsics and avoids the use of the broadcast intrinsic
instruction. The resulting multiple multiply-add operations
hide the pipeline latency.

Furthermore, we optimize the 6-loop implementation, where
the original matrices in GEMM are tiled in blocks of di-
mensions blockM , blockN , blockK. We apply the following
BLIS-like [33] optimizations: i) loop reorder, ii) matrix pack-
ing, iii) block size tuning, iv) loop unrolling, v) prefetching,
and vi) vectorization using intrinsic instructions. We perform
loop reorder and unrolling for the same reasons as in the 3-
loop implementation. We pack matrices to facilitate contiguous
memory accesses. We tune the block sizes to the size of the
caches, in order to minimize memory accesses and maximize
reuse. Finally, prefetching assists in hiding load latencies.

Fig. 3 shows the pseudocode for the optimized 6-loop imple-
mentation of the GEMM kernel. The 6-loop implementations
allow us to pack the blocks of matrices A and B so that the
innermost loop performs contiguous accesses. The order in
the innermost 3 loops is jik, where matrix A is accessed in
continuous order from the packed A matrix to perform the



dot product with the packed B matrix. The first three loops
in lines 3, 4, and 6 are incremented by block sizes blockM ,
blockN , and blockK, tuned to the architecture. Matrices are
packed in lines 5 and 7, to facilitate contiguous cache access in
the inner-most loop and facilitate prefetching. Matrix packing
operations are also vectorized using intrinsic instructions.

The inner loops (lines 8 and 10) are incremented by gvl
(granted vector length) and U (unrollfactor), as in the 3-
loop implementation, to make use of VLA and facilitate loop
unrolling. Here, gvl×U is also called the “macro-block” size.
As in the 3-loop implementation, we perform loop reorder.
Additionally, in this implementation, the blocks of matrix C
are prefetched into the cache before storing them in the vector
registers. We also prefetch the A and B packed matrix data
into the L1 cache. The remainder of the inner-most loop is
vectorized in the same way as in the 3-loop implementation.

We note that prefetching capabilities vary among the plat-
forms. The toolchain used for RISC-VV does not yet support
software prefetching (Zicbop extension), therefore any relevant
intrinsic instructions are ignored by the compiler. In the case of
ARM-SVE, the compiler generates the assembly instructions
for prefetching, which take effect on the A64FX processor, but
are treated as no-ops on our gem5 platform, which currently
does not support software prefetching.

B. Winograd optimizations

As an alternative to im2col+GEMM, for convolutional lay-
ers with small filter sizes, we target the Winograd algorithm
from the NNPACK [34] package. NNPACK, Arm Compute
Library and other implementations [28], [50], [51] vector-
ize Winograd with ARM-NEON. We vectorize Winograd by
building on the NEON implementation in NNPACK in a VLA
way, to utilize the longer vector lengths up to 2048-bit on
ARM-SVE. The Winograd implementation requires an input,
weight, and output transformation and a tuple multiplication,
and operates on a default tile size of 8×8. Vectorizing the
transformations with longer vector lengths would require a
larger tile size, however, in this case, the numerical accuracy
would drop. Therefore, we employ a scheme of inter-tile
parallelism across the input/output channels by using an 8×8
tile from each channel, which allows us to vectorize the
transformation kernels using long vector lengths. Using 4
input/output channels with one row of 8×8 tiles from each
channel as shown in Fig. 5, we can utilize two 512-bit vector
registers. To utilize longer vector lengths, we increase the
number of input/output channels accordingly, e.g. 16 channels
for 2048-bit vector registers.

The pseudocode in Fig. 4 shows our inter-tile parallelization
across the channels for the input transformation in Winograd.
Lines 2 to 4 select the vector length, and determine the number
of channels at runtime, in a VLA manner. For example, for a
512-bit vector length with 16 single precision elements, the
number of channels will be 4. If the number of channels
is more than 4, inter-tile parallelism is enabled. Lines 6-
16 create the buffers buff1, buff2 to utilize the specified
vector length. In Line 17, these buffers are used as a input for

1: i← 0 , j ← 0, k ← 0, tileitr ← 0
2: elements = 4
3: VL = svcntw() // get vector length
4: interchannels = V L/elements
5: if channels >= 4 then
6: tiles = interchannels
7: for tileitr ← 0, tileitr < channels, tileitr+ = tiles do
8: //Buffer preparation for longer vectors
9: for k ← 0, k < tiles, k+ = 1 do

10: for i← 0, i < 8, i+ = 1 do
11: for j ← 0, j < 4, j+ = 1 do
12: buff1[(i×V L)+(j+(k×4)))] = pack row-wise

0-3 elements of 8x8 tile
13: buff2[(i×V L)+(j+(k×4)))] = pack row-wise

4-7 elements of the same 8x8 tile
14: end for
15: end for
16: end for
17: nnp iwt8x8 3x3 with offset sve vectorized()
18: Store the transposed data in their respective tiles across

channels.
19: end for
20: else
21: // single tile
22: nnp iwt8x8 3x3 with offset sve vectorized()
23: end if

Fig. 4: Input transformations code snippet from winograd showcasing
the inter-tile parallelism across channels

the SVE-vectorized input transformation kernel. We optimize
the kernels for the weight and output transformation for
longer vector lengths in a similar way, using the same inter-
tile parallelization scheme, and applying the corresponding
vectorized transformation (replacing the function in line 17).

We additionally vectorize the tuple multiplication in a VLA
way, which can use up to 2048-bits of vector length. To utilize
the longer vector lengths for tuple multiplication, we increase
the number of blocks for the GEMM kernel, using 16 blocks
with 4 elements in each block. Therefore, there will be a total
of 64 elements to utilize the maximum 2048-bit vector length.

V. HARDWARE TUNING

In this section, we detail our methodology to study the
impact of tuning hardware parameters with the optimized
kernels for CNN inference. We focus on three parameters:
vector lengths, L2 cache sizes, and the number of vector lanes.
To support scientific applications and AI workloads, the latest
chips are integrating longer vector lengths for fast processing.
As the vector length increases, so does the pressure on the
memory subsystem. Adding larger caches to alleviate the pres-
sure can increase the access time. Even if we assume constant
access time, we still need to determine the exact cache size that

Fig. 5: Inter-tile parallelism in Winograd



is beneficial. Along with the cache sizes, there is a need to have
more on-chip parallelism. However, bigger caches and more
on-chip parallelism can influence the performance differently
for different vector lengths. Therefore, it is important to study
the trade-off between these micro-architectural parameters, as
these hardware components occupy significant die area, while
having an important influence on performance.

Vector length agnostic ISAs can work with different vector
lengths without any modifications to the ISA, hence making
vector length a hardware parameter in designing vector archi-
tectures. With recent ISAs supporting very long vector lengths,
this raises the question of how long the vector lengths should
be. Tuning the vector lengths to the demands of optimized
CNN kernels can guide hardware designers in the selection of
the appropriate vector lengths on future architectures.

Longer vector lengths require more on-chip storage, which
consequently may require larger cache to effectively handle
locality. Larger cache sizes can reduce the cache miss rate,
therefore this raises the question of how large should the L2
cache be for different vector lengths. This question also relates
to the length of vector registers, since longer vector registers
can lead to increased pressure on the memory subsystem.

The number of vector elements to be processed per cycle
is determined by the available on-chip parallelism. To achieve
this, additional pipelines can be added to a vector architecture.
However, this raises the question of how many vector lanes are
required for different vector lengths, as adding more pipelines
increases the start-up overhead, which can potentially degrade
the performance with short vector lengths.

To respond to the aforementioned questions, our analysis
shows the trade-offs between these three micro-architectural
parameters. We highlight that other micro-architectural pa-
rameters, such as in-order vs. out-of-order cores, the core
frequency, or the number of registers, can also be important,
but are beyond the scope of this paper.

VI. EVALUATION OF IM2COL+GEMM

In this section, we present the results of our co-design
study of CNN inference on RISC-VV and ARM-SVE. We
first showcase the impact of algorithmic optimizations and
hardware parameter tuning on RISC-VV, using a single core.
For ARM-SVE, we evaluate our algorithmic optimizations in
detail on the A64FX processor and perform the hardware
parameter tuning on ARM-SVE@gem5. In all experiments
with gem5, we report performance in terms of execution
cycles. We exclude cycles spent on the initialization phase,
such as network setup, as this is a constant overhead not
incurred when continuously running inference over a stream
of images.

A. Algorithmic optimizations with RISC-VV

We first analyze the performance of the algorithmic opti-
mizations for im2col+GEMM on RISC-VV@gem5. To vec-
torize the inner-most kernels of the optimized 3-loop and
6-loop implementations, we use the EPI builtins [52]. In
the 3-loop implementation we have tuned the loop unrolling

TABLE II: Relative execution time of YOLOv3 (4 layers) with the
optimized 6-loop implementation, compared to the optimized 3-loop
implementation of im2col+GEMM on RISC-VV@gem5

Block sizes Normalized Performance
128×1024×256 0.9
16×1024×128 0.95
16×512×128 0.98
16×512×256 0.96
32×512×128 0.97

64×1024×128 0.95

factor by utilizing up to 32 vector registers. Our study shows
no significant improvement beyond utilizing 16 registers for
RISC-VV. In fact, by utilizing the 32 register, we experienced a
performance drop by ∼15% due to register spilling. Therefore,
we set the unrollfactor as 16 for the 3-loop and 6-loop
implementations. Moreover, for the optimized 6-loop imple-
mentation, we tune the block sizes of the matrices, determined
by the blockM , blockN , blockK parameters, to fit the packed
matrices into the L2 cache, since, in the RISC-VV@gem5
model, the VPU is connected to the L2 cache.

We simulate the first 4 convolutional layers of the YOLOv3
network on RISC-VV@gem5, with 1MB of L2 cache and 8
vector lanes, on a single core, using the optimized 3-loop im-
plementation and the optimized 6-loop implementation, with
different block sizes. The relative execution time of the 6-loop
implementation over the 3-loop implementation is presented in
Table II, for block sizes of different dimensions. We observe
that the optimal block size for the 6-loop implementation is
16 × 512 × 128, where the two implementations only differ
by 2%, a difference that is not significant in the simulated
environment.

Overall, the results indicate that the optimized 6-loop im-
plementation does not offer any performance benefit over the
optimized 3-loop implementation on RISC-VV, despite the
BLIS-like optimizations. We attribute this to the following two
reasons. First, the 6-loop implementation packs the matrices to
facilitate contiguous cache accesses during the inner-most loop
and prefetches the packed B and A matrices in the L2 and L1
caches. The rationale behind tuning the block size in BLIS-
like optimizations is to fit matrix B in the last-level cache (L2)
and matrix A in the L1 cache. However, in RISC-VV modeled
with gem5, the VPU is connected to the L2 cache. Therefore,
data in the L1 cache is not directly accessed by the VPU, and
practically, the implementation benefits only from caching in
L2. Additionally, as also explained in Section IV, RISC-VV
does not support prefetching, which is a desired feature in the
6-loop implementation, in order to hide the latencies associated
with matrix packing.

We conclude that BLIS-like optimizations do not boost
the performance of convolutional layers on RISC-VV.
We highlight that, after vectorizing all the kernels of the
convolutional layer and by optimizing the im2col+GEMM
kernel with the 3-loop implementation, we observe 14 ×
higher performance compared to the naive baseline for the
YOLOv3-Tiny network model.



TABLE III: Average vector length and L2 cache miss rate
Vector length YOLOv3 L2 cache miss rate(%)

512-bit 512 32
1024-bit 1022.9 36
2048-bit 2041.9 39
4096-bit 4063.7 42
8192-bit 8111.9 61
16384-bit 15902.2 79

B. Hardware parameters tuning with RISC-VV

Using the optimized 3-loop implementation, which demon-
strates the best performance on RISC-VV, we proceed our
experimentation with tuning hardware parameters of the archi-
tecture. We experiment with the first 20 layers of the YOLOv3
model, out of which 15 are the convolutional layers.

a) Scalability with different vector lengths: Fig. 6
demonstrates the impact of different vector lengths on the
performance of the convolutional layers on RISC-VV. For this
experiment, we consider a fixed L2 cache size of 1MB and a
fixed number of vector lanes, equal to 8 on gem5, varying
only the vector length. We note that longer vector lengths
hide the pipeline latency of vector lanes, thus any overheads
associated to the start-up time become minimal. Moving from
512-bit to 16384-bit vector lengths, the performance increases
by 2.5×, but effectively, the performance saturates beyond
the 8192-bit vector length. To analyze this effect, we present
the consumed average vector lengths and L2 cache miss
rate, collected in gem5, in Table III. Although the 16384-
bit vector length is almost fully utilized, the L2 cache miss
rate increases significantly both for the 8192-bit and 16384-
bit vector lengths. We therefore attribute this performance
saturation to the increase in the L2 cache miss rate. Although
longer vector lengths help in hiding latency, which should
boost the performance without increasing the cache size, they
also require more data to be processed per cycle, therefore to
be transferred from the memory to the cache and then to the
VPU, hence the increased L2 cache miss rate.

b) Scalability with different L2 cache sizes: We continue
our hardware parameter tuning with the L2 cache sizes. We
examine the impact of L2 caches for different vector lengths,
since we have observed an increase in L2 cache miss rate
for the 1MB cache as the vector length increases. For this
experiment, we consider a fixed number of vector lanes equal
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Fig. 6: Impact of vector lengths on RISC-VV@gem5 for YOLOv3
(20 layers), for constant L2 cache 1MB and 8 vector lanes.
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Fig. 7: Impact of the L2 cache size on RISC-VV@gem5 for YOLOv3
(20 layers), for 8 vector lanes.

to 8, on gem5. We expect a larger L2 cache to reduce the miss
rates, however, one should note that larger caches come with
increased access latencies and require more chip area.

Fig. 7 shows the performance of YOLOv3 from 1MB to
256MB with different vector lengths. We observe that for
vector lengths up to 4096 bits, the performance increases by
1.5× as we increase the L2 cache size. For the longer 8192-
bit and 16384-bit vector length, the equivalent performance
improvement is 1.7×-1.9×. We additionally observe that, with
a 256MB L2 cache, performance improves by ∼5% from
8192-bit vector length to 16384-bit vector lengths and L2
cache miss rates are 2.4% and 2.6% respectively. Therefore,
we conclude that larger caches are beneficial, given that their
latency remains low. Moreover, it is important to use larger
L2 caches for longer vector lengths, but the performance
gains of very long vector lengths are limited. Note
that we have performed the same experiment on YOLOv3
using the optimized 6-loop implementation of im2col+GEMM,
with block sizes tuned for an 8MB L2 cache, validating our
conclusions regarding the L2 cache size tuning.

c) Scalability with different numbers of vector lanes:
We finalize our analysis of hardware parameters by tuning the
number of vector lanes, i.e. the parallel SIMD units in the
vector architecture that determine the on-chip parallelism. We
examine the impact of this hardware parameter for different
vector lengths, as increasing the number of vector lanes also
increases the startup time; execution starts only after filling all
the vector lanes. We note, however, that this analysis is limited
by gem5 capabilities, which only allows to simulate up to 8
vector lanes. For this experiment, we consider a fixed 1MB L2
cache. Increasing the vector lanes from 2 to 8 with different
vector lengths, we observe a performance improvement of
∼1.25× for the 8192-bit vector length. In the case of 512-bit,
performance scales from 2 to 4 lanes, but becomes saturated
beyond 4 lanes. We therefore conclude that additional vector
lanes are more beneficial to longer vector lengths.

C. Algorithmic optimizations with ARM-SVE

Similarly to RISC-VV, for ARM-SVE, we analyze the per-
formance of the algorithmic optimizations for im2col+GEMM.
For this, we use A64FX. We let the compiler to auto-vectorize
all the kernels and manually vectorize kernels that the compiler



TABLE IV: Arithmetic Intensity and Sustained performance of
YOLOv3 convolutional layers on A64FX

Layers M N K AI % of Peak
L1 32 369664 27 7.32 46
L2 64 92416 288 26 72
L3 32 92416 64 11 50
L5 128 23104 576 52 77
L6 64 23104 128 21 70
L10 256 5776 1152 101 81
L11 128 5776 256 42 75
L38 256 1444 512 76 82
L44 1024 361 4608 126 83
L45 512 361 1024 88 78
L59 255 361 1024 65 75
L61 256 1444 768 85 91
L62 512 1444 2304 162 83
L75 255 5776 256 63 75

fails to vectorize, such as normalization and activation. We
manually vectorize the inner-most kernels of the optimized
3-loop and 6-loop implementations on SVE.

Comparing the 6-loop implementation to the 3-loop im-
plementation with ARM-SVE on A64FX, we observe a 2×
performance improvement using the 6-loop, BLIS-like opti-
mized GEMM kernel on the YOLOv3 network model. Unlike
the case of RISC-VV modeled with gem5, which poses the
limitation of the VPU being attached to the L2 cache, on
A64FX, the 6-loop implementation is able to take advan-
tage of the caches and improve the performance of GEMM.
Moreover, since prefetching is a hardware feature of A64FX,
the prefetching instructions boost the performance of the 6-
loop implementation. We note, however, that the 6-loop im-
plementation outperforms the 3-loop implementation by 15%
on ARM-SVE@gem5 which does not support prefetching,
with a 512-bit vector length. Comparing the optimized 6-loop
implementation to the naive GEMM in Darknet, we observe
a ∼32× performance improvement for YOLOv3 on A64FX.

a) Per-layer sustained performance: We assess the sus-
tained performance of the convolutional layers in YOLOv3,
with respect to their arithmetic intensity, as per the roofline
model, on A64FX, using our optimized kernels. YOLOv3 has
75 convolutional layers, but some layers work on the same
input sizes. We therefore consider the 14 discrete convolutional
layers which work with discrete matrix sizes, and compute the
arithmetic intensity (AI) per layer as follows:

AI = ArithmeticOperations
Bytes = 2×M×N×K

4×(M×N+K×N+M×K)

where M , N , K correspond to the sizes of the weight, input
and output matrices. We showcase the results in Table IV.
We note that the peak performance of a single A64FX core
is 62.5 GFLOPs. The results indicate that some layers have
low AI and sustained performance, especially the layers with
small M and K values, i.e., small weight matrix size. There is
additional room for performance improvement for these layers,
which is, however, beyond the scope of this paper, where we
optimize kernels focusing primarily on portability across ISAs
with VLA vector extensions.

b) Performance Analysis of Manual vs Auto-
vectorization: To understand the effectiveness of auto-
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Fig. 8: Impact of vector lengths and L2 cache size on ARM-
SVE@gem5 for YOLOv3 (20 layers).

vectorization, we performed a comparative analysis for
manual optimization and auto-vectorization. Both clang
and gcc compilers were able to vectorize most of the CNN
kernels, however with performance limitations. As a reference,
auto-vectorization achieved ∼6.3x speedup compared to the
baseline for YOLOv3-tiny. Forcing the compiler to unroll
loops while auto-vectorizing, with different unroll degrees,
we achieved ∼9x speedup. With manual vectorization and
optimizations, we were able to achieve ∼21× speedup
compared to the baseline, on ARM-SVE on A64FX.

D. Hardware parameters tuning with ARM-SVE

Similarly to RISC-VV, we study the impact of micro-
architectural parameters with ARM-SVE using gem5. As the
ARM-SVE model in gem5 sets the number of vector lanes
proportional to the vector length, we focus only on tuning
the vector length and the L2 cache size. We do not further
tune the block sizes of the 6-loop implementation, as they fit
in the smallest simulated cache. Fig. 8 shows the impact of
different vector lengths and L2 cache sizes on the performance
of the first 20 layers of YOLOv3. We observe that, for a
cache of 1MB, moving from 512-bit to 2048-bit vector lengths,
the performance improves by 1.34×. Additionally, similarly
to RISC-VV, performance benefits from larger caches, with
a performance improvement of 1.6× as we increase the L2
cache size from 1MB to 256MB for 2048-bit vector length.
Our findings for ARM-SVE agree with our observations for
RISC-VV: our optimized kernels can benefit from longer
vectors and larger cache sizes, which can significantly boost
the performance of CNN inference on vector architectures.

VII. EVALUATION OF WINOGRAD

As explained in Section IV, we vectorize the transformation
and tuple multiplication kernels of Winograd in a VLA way,
using intrinsic instructions on ARM-SVE. Our kernels adapt
the different vector lengths and can be executed with 512-bit,
1024-bit and 2048-bit vector lengths. We use these kernels in
Darknet, to implement convolutional layers with kernel sizes
of 3×3 and stride 1 and 2. For convolutional layers of different
kernel sizes, we fall back to our optimized im2col+GEMM.

For our Winograd implementation on ARM-SVE, we use
intrinsics to create tuples of four vectors and then transpose



these vectors. On RISC-VV, currently, no specific intrinsics
are available to perform these operations. We therefore imple-
mented a solution that uses temporary buffers and additional
store and gather-load intrinsics. This however limits the per-
formance improvement and the potential insights of running
Winograd on the RISC-VV with very long vectors. Because of
this reason, we do not include RISC-V results in the Winograd
analysis.

A. Algorithmic optimizations with ARM-SVE

We evaluate the performance of the optimized Winograd im-
plementation in Darknet on the A64FX processor. As a base-
line for comparison, we use our optimized im2col+GEMM.
We note that a naive implementation of Winograd is slower
than using the naive implementation of im2col+GEMM, there-
fore we use our optimized im2col+GEMM as the baseline for
comparison. A primary analysis revealed that the weight trans-
formation is a major bottleneck, but it can be performed offline
for inference. After excluding the weight transformation time,
we achieve a speedup of 1.5× compared to im2col+GEMM
for VGG16, where all convolutional layers use 3×3 kernel-
sized filters. For YOLOv3, where 38 out of the 75 use 3×3
kernel-sized filters, the equivalent speedup is 1.35×. Out of
these 38 layers, the 32 with stride 1 perform 2.4× better with
Winograd compared to im2col+GEMM, while for the 6 layers
with stride 2, Winograd is 1.4× slower than im2col+GEMM.
The remaining layers use 1×1 kernel-size filters and default
to im2col+GEMM. We therefore conclude that our optimized
Winograd algorithm offers significant performance im-
provement for layers with stride 1, however, different
algorithmic optimizations are required to achieve high
performance for layers with stride 2. Still, convolutional
layers require careful algorithmic selection related to the
kernel sizes and strides.

B. Hardware parameter tuning with ARM-SVE

Similarly to our approach for im2col+GEMM, we study
the impact of hardware parameters on the performance of our
optimized Winograd algorithm for ARM-SVE, using Gem5.
As indicated by our evaluation on A64FX, we use Winograd
for all convolutional layers with 3×3 kernel sizes and stride 1,
and default to our optimized im2col+GEMM implementation
for all other cases. In particular, we study the impact of the L2
cache size, ranging from 1MB up to 256MB, and the impact
of different vector lengths, i.e. 512-bit, 1024-bit and 2048-bit.
The number of vector lanes is propotional to vector lengths.

We showcase the results of our analysis for the first 20
layers of YOLOv3 in Fig. 9, and for VGG16 in Fig. 10. For
both network models, for an L2 cache of 1MB, we observe a
performance improvement of 1.4× as we increase the vector
lengths from 512 to 2048 bits, due to increased throughput
and decreased pressure on the memory subsystem.

Evaluating the impact of L2 cache sizes, we observe that,
for the first 20 layers of YOLOv3, performance improves by
1.75× for all vector lengths, when increasing the caches from
1MB to 256MB. For VGG16, the performance improves by
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Fig. 9: Impact of vector lengths and L2 cache size with Winograd
on ARM-SVE@gem5 for YOLOv3 (20 layers).
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Fig. 10: Impact of vector lengths and L2 cache size with Winograd
on ARM-SVE@gem5 for VGG16.

1.4× from 1MB to 64MB, but the network does not benefit
from a larger cache. We note that all layers in VGG16 use
Winograd, which has smaller cache requirements compared
to im2col+GEMM, whereas several YOLOv3 layers invoke
im2col+GEMM. As a conclusion, longer vectors are highly
beneficial to the performance of Winograd-enabled convo-
lutional layers and networks. With respect to the L2 cache
size, our optimized Winograd algorithm does not have high
cache requirements, and therefore is able to perform well
with moderately large L2 cache sizes.

We finally compare the performance of VGG16 using
Winograd, compared to im2col+GEMM, with different vec-
tor lengths of 512, 1024 and 2048 bits, with 1MB of L2
cache. The performance improves by 1.4×, 1.5×, and 1.3×
respectively, compared to im2col+GEMM, for the different
vector lengths, showing that Winograd is a good alternative to
im2col+GEMM for any vector length.

VIII. PERFORMANCE-AREA ANALYSIS

Our analysis so far has shown that the performance of
CNN inference can benefit from longer vector lengths and
larger caches. This, however, will require a larger chip area.
To evaluate this performance-area tradeoff, as well as the
attainable performance in a fixed area envelope, we examine
the scenario of a RISC-VV core with a decoupled VPU of 8
lanes, like the one simulated in Section III, implemented in
7nm FinFET technology. Given the results in [53], we estimate
the area of the core, VPU and vector register file (VRF) in
22nm, based on the assumption that only the VPU VRF area
will increase proportionally to the vector length, while the
core and VPU FPU area will remain constant. Our analysis
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Fig. 11: Pareto frontier for the performance and area of a RISC-
VV chip implemented at 7nm, with increasing vector lengths and L2
cache sizes, for YOLOv3 (20 layers).

estimates that the chip area dedicated to the VRF consumes
3%, 6.9%, 12.68%, 22.5%, and 36.9% of the total chip area,
as we increase the vector length from 512 bits to 8192 bits.
We then scale the total area to a 7nm FinFET technology,
which translates to a conservative estimate of a 6.2× increase
in transistor density [54], [55]. PCacti [56] is used to estimate
the area of L2 caches in 7nm.

We present our analysis for the performance of the first 20
layers of the YOLOv3 network against the expected chip area
in Figure 11. It is evident that the impact of longer vector
lengths on area is minimal, but it is significant for perfor-
mance. Most of the points on the Pareto frontier correspond
to longer vector lengths. On the other hand, the cache size
has a more significant impact on the total area, driving the
chip area up to 125.1mm2 for the largest configuration, with
less significant impact on performance. We find the Pareto-
optimal configuration for both performance and chip area to
use the smallest examined L2 cache size, i.e., 1MB, with one
of the larger vector lengths, i.e., 4096 bits. Although we expect
that technology scaling will further decrease the required
area, making hardware designs with larger caches feasible, we
highlight that the caches still consume most of the area and
power of the chip [57] and algorithmic implementations which
are less sensitive to the cache size, e.g., Winograd instead of
im2col+GEMM, need to be considered for effective co-design
of future vector architectures.

IX. CONCLUSION

In this paper, we presented a hardware and software co-
design study of CNN inference on modern vector architectures
with variable vector lengths. Focusing on the most time-
consuming kernels in convolutional layers, we have devel-
oped efficient, VLA-vectorized, optimized implementations of
im2col+GEMM and the Winograd algorithm.

Experimenting with two different ISAs, RISC-VV and
ARM-SVE, we conclude that certain optimizations are not
portable across vector architectures, and highlight the fol-
lowing portable optimizations: i) maximize utilization/reuse
of vector registers, ii) use unstrided load/store instructions,
for contiguous memory accesses, iii) use multiple multiply-
add instructions to hide the pipeline latency. We additionally
conclude that longer vector lengths improve performance even
with smaller caches, however larger caches with low latencies
can help minimize any adverse effects from increased cache
misses. Finally, more vector lanes can hide the pipeline and
startup latency for longer vector lengths.

Our algorithmic optimizations using VLA ISAs for
im2col+GEMM improve the performance of CNN inference
by 14× for YOLOv3-Tiny on RISC-VV and by 32× for
YOLOv3 on ARM-SVE, compared to the naive implemen-
tation of im2col+GEMM in Darknet. Our vectorized Wino-
grad algorithm offers additional performance improvement of
1.35× and 1.5× to YOLOv3 and VGG16 respectively, while
having lower cache requirements.

We believe that our work is useful to programmers, hard-
ware designers and compiler developers. In the future, we aim
to extend our algorithmic optimizations for vector architectures
to more kernels in DNN inference and examine additional,
influential architectural and micro-architectural features.
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