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Abstract—Forced displacement of people worldwide, for example due
to violent conflicts, is common in the modern world, and today more than
82 million people are forcibly displaced. This puts the problem of migra-
tion at the forefront of the most important problems of humanity. The
Flee simulation code is an agent-based modelling tool that can forecast
population displacements in civil war settings, but performing accurate
simulations requires non-negligible computational capacity. In this paper
we present our approach to Flee parallelization for fast execution on
multi-core platforms, as well as discuss the computational complexity of
the algorithm and its implementation. We benchmark parallelized code
using a supercomputers equipped with AMD EPYC Rome 7742 and
Intel Xeon Platinum 8268 processors and investigate its performance
across a range of alternative rule sets, different refinements in the spatial
representation and various numbers of agents representing displaced
persons. We find that Flee scales excellently to up to 8,192 cores for
large cases, although very detailed location graphs can impose a large
initialization time overhead.

Index Terms—Migration, Refugees, Global Systems Science, Global
Challenges, parallelization, HPC, AMD Rome, Intel Xeon, benchmarks,
modeling, computational complexity.

1 INTRODUCTION

IN today’s world, the issue of human migration is of huge
importance to the global community, with over 82 million

people forcible displaced [48] and immigration policies
being one of the major topics in the media. Forecasting
the movements and destinations of people displaced by
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conflict is useful, as it can guide the implementation and
management of humanitarian support efforts. One way to
provide these forecasts is through simulation. In this paper,
we present a parallel implementation of the Flee simulation
code and analyze its performance under a wide range of
conditions. Flee forecasts the destinations of people escap-
ing violent conflicts, and has been previously validated for
a range of geographically different conflicts [45], [46], [29],
[52] using the FabSim3 automation toolkit [25].

Social simulation is a computational method that aims
to study issues in the social sciences including problems
in psychology, organizational behavior, sociology, political
science, economics, anthropology, geography, and human-
itarian research [21]. It combines the descriptive abstrac-
tion of a social system with a process-centric or behavior-
centric algorithm to reconstruct the social reality in a virtual
environment, and execute the human activities to support
reasoning in decision making. This field explores the simu-
lation of societies as complex adaptive non-linear systems,
which are difficult to study with classical mathematical
equation-based models. And in which a perfect understand-
ing of the individual parts does not automatically convey
a perfect understanding of the whole system’s behavior,
especially when there is only sparse data available and
only partial knowledge of the real-world phenomenon is
at hand [34]. Agent-based social simulation (ABSS) is a
variant of computational social systems [14], that involves
modeling different virtual societies in which a population
of independent agents, varying on time and spatial scales,
with individual behaviors defined through a set of rules,
interact with each other across a logical network. The main
goal of the simulated society is to observe the behaviors of
the agents and synthesize simulated data to learn about the
reactions of the artificial agents and their combined effects
evolved. This helps in studying the descriptive and perspec-
tive view of the social system in question and building an
inferential reasoning framework that assists in real-world
decision-making.

In this work, we use agent-based social simulations
to model and analyze a crucial problem in humanitarian
research: forced human migration. Forced human migration
is the involuntary relocation of people away from their
homelands due to a variety of factors including natural
disasters, violence, ethnic cleansing, individual or group
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persecution, droughts, civil wars, deportation, and/or other
religious and social reasons [18]. According to the UN
Refugee Agency (UNHCR) more than 70.8 million people
are forcibly displaced worldwide. Among them, 25.9 million
are refugees, half of which fled from Syria, Afghanistan,
and South Sudan [48]. These fleeing individuals are the
unfortunate victims of internal armed conflicts and civil
wars, who make decisions to migrate in times of distress.
Their decisions are often based on economic and political
push and pull factors in sending and receiving countries.
Researchers have mostly investigated why human migra-
tion occurs and its effect on economies using migration
theories and econometric models, with little attention paid
to predicting forced human migration. In addition, migra-
tion data is often missing, incomplete, or only available
at long intervals. As a result, existing models largely base
on regressing existing forced migration data, limiting their
predictive power with incomplete or short datasets.

In this area of research, it is important to be able to pre-
dict where refugees go because: (i) It helps governments and
NGOs to correctly allocate humanitarian resources to the
refugee camps and save refugee lives; (ii) It helps complete
incomplete data collections on refugee movements; and (iii)
It helps to investigate the consequences of a nation closing
its border for refugees. To address the main goals of this
social problem, we use an agent-based social simulation
development approach (SDA) [45] that allows us to forecast
the movements of forcibly displaced people in conflicts. We
model refugees as agents with defined behaviors using a set
of rules and are placed within a virtual environment defined
by a geospatial location graph. The agent model, virtual
environment, and the set of rules all together constitute an
agent-based social simulation framework: Flee.

The parallel version of Flee, called PFlee, is a highly
efficient and scalable code that helps to easily simulate
complex simulation scenarios of forced migration occurring
in different parts of the world. The main motivation for
developing PFlee is firstly to enable social scientists and
researchers to perform large-scale simulation runs with (a)
a large number of conflict locations, camps, cities, towns,
and settlements and (b) a large number of refugees moving
across these locations. As highlighted in [11], most existing
approaches in parallel ABMS target a parallel parameter
sweep and not scale-out parallelization of ABMS, while re-
cent work recognizes the need for high-performance ABMS
[42], and another recent approach employs Markov aggre-
gation for more computationally efficient simulation [19].
Secondly, PFlee seeks to enable modelers and developers to
extend the framework by focusing on the complexity of the
conceptual model with more complex agent behaviors, rule
sets and/or virtual environments, without worrying about
the time and computational complexity of the framework.
PFlee is written in Python, offering programming ease,
allowing for high programming and scientific productivity,
and fast prototyping. It offers efficient execution on any type
of state-of-practice or state-of-the-art cluster of multicore
CPUs, making use of open-source Python libraries for paral-
lelization and efficiency. With the development of PFlee, we
have achieved reducing simulation time from a few hours
to a few minutes or seconds. The Flee (and PFlee) agent-
based modeling toolkit is publicly available as open-source

(a) 10-10-4 (b) 10-10-8

(c) South Sudan Location Graph

Fig. 1: Graphical overview of 3 location graphs, includ-
ing 10-10-4 (top left), 10-10-8 (top right) and the South
Sudan location graph (bottom). The 50-50-4 and 100-100-
4 location graphs are larger versions of 10-10-4 with the
same connectivity characteristics. The 50-50-8 and 100-100-8
location graphs are larger versions of 10-10-8 with the same
connectivity characteristics.

software 1, under a BSD-3-Clause license.
The remaining of this paper is organized as follows.

Section 2 reviews state-of-the-art tools commonly used to
implement networked ABMs. Section 3 presents the main
algorithms used in Flee to model the movements of agents,
sequentially and in parallel. In the same section, we also
present our approach to distributing information (locations
and agent state updates) across processes, balancing the
computational load. Section 4 describes performance op-
timizations in PFlee using the Numba library in Python.
Section 5 evaluates the performance of PFlee using different
scenarios on two large-scale systems employing different
processor architectures: AMD EPYC Rome and Intel Xeon.
Section 6 discusses the scientific results of PFlee simulations

1. https://github.com/djgroen/flee-release
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from the perspective of migration research. Finally, Section
7 concludes the paper and describes future work.

2 RELATED WORK

In this section, we present the wider context in which
our parallelization effort of the Flee migration modeling
code takes place. We discuss two aspects: human migration
modeling and large individual- and network-based social
simulations.

2.1 Human migration modelling
In the context of human migration, there is a range of work
that is relevant to our research. As a foundational contribu-
tion, Edwards [15] highlights the potential use of computa-
tional models in predicting key spatial patterns of conflict-
induced forced displacement. In terms of examples, Hebert
et al. [27] propose an agent-based model of Syrian refugees
to predict their movements and behavior on destination
selection based on their respective characteristics and needs.
Sokolowski et al. [44] propose an agent-based model using
real-world data of the Syrian cities and the demographics
of the city population to simulate Syrian population dis-
placement. Collins at al. [12] introduce a strategic group
formation mechanic into an ABM to investigate the impact
on refugee evacuation time. Picascia et al. [39] present an
agent-based simulation of housing in urban Beirut as a tool
for policy-making and what-if questions about the urban
environments in the context of migration. Liu at al. [32]
develop a simulation of refugee flow in Europe using a
multi-objective optimization dynamic programming model
to compute the best allocation of resources in different re-
gions. Hattle et al. [26] model the refugee immigration flow
of Syrian refugees to and through Europe using an agent-
based approach. Other relevant works focus on population
simulation, rather than migration, offering approaches that
combine agent-based modeling with micro-simulation [53],
and deep neural networks to model the decision making
[54].

The aforementioned human migration simulations
mostly focus on the social aspects of the simulation and lack
high performance and large-scale implementations. Only a
scarce set of works focus on high-performance and large-
scale agent-based simulations, and almost no works address
human migration. Blandin et al., [6] propose a parallel
Python implementation for human migration and scale up to
a population of 7 billion agents at a macro scale resolution
(global scale), however, the micro-scale agent behaviors
have been largely ignored. In this paper, we present a
parallel implementation of agent-based human migration
simulation with sufficient scalability while keeping an ac-
count for the micro-level agent behavior e.g., individual
decisions, methods of transport, and awareness levels.

2.2 Large individual- and network-based social simula-
tions
Large individual- and network-based social simulations
form a fundamental pillar for social simulations in com-
putational global system science (GSS) applications from a
wide range of domains such as epidemiology [20], [8], [17],

[2], social networks modelling [50], economics and logistics
including supply chains [41], as well as urban planning [28],
[47] including transportation modelling [36]. Many of these
models can be categorized into four groups according to
the network structure: hierarchical (tree-like) models, social
contact networks, plain and multilayer networks, and inter-
connected geo-social networks,[22].

Hierarchical models originate from computational epi-
demiology, where they serve to model physical interactions
in society, in a greatly simplified manner, with static multi-
level trees [20], [8], [38]. The root of the hierarchical model
tree corresponds to the whole society, while the lower levels
of the tree represent elements of the society with finer gran-
ularity, until reaching the level of individual households as
leaves. In particular, the intermediate layers can correspond
to countries, states, regions, counties, municipalities, settle-
ments, and city blocks. Agents are assigned to the leaves of
the tree. Distance to the closest common parent determines
the probability of interactions between two agents. With hi-
erarchical models, the fastest known simulation corresponds
to C++ codes for pandemics simulation by K. Perumalla
and S. Seal [38] which reports speed up 10’000 on 64K cores
(15.2% efficiency) on Cray XT5.

Social contact networks (SCN) were also introduced first
in the context of computational epidemiology [16], [17] to
enrich the set of policies for analysis and reflect the real-
world social networks more accurately compared to the tree-
like models. SCN captures agent interactions by a bipartite
agent-to-location (A2L) graph GA2L = (VA, VL, E) – with
agents A on the one side and loci of their interactions L
on the other – supplemented by the stochastic schedule
W for agents to visit loci of interactions. SCNs gained
a solid attention in HPC community, where researchers
developed a significant number of optimizations to scale
SCNs on distributed HPC environments [2], [55], [4], [50].
These studies evaluate impact of completion detection syn-
chronization [55], message aggregation [55], as well as dif-
ferent load balancing strategies including round-robin data
distribution [2], partitioning focusing on edge cuts [55], and
geographic partitioning [4]. In order to address peculiarities
of real-world data related to skewed and heavy-tailed de-
gree distributions, the authors analyse performance of hub
location [55], [50] and agent [50] decomposition. In [4], the
authors reported speed up of 182’073 (23% efficiency) on
786K cores of Blue Gene/Q with the Charm++ codes for
pandemics simulation called EpiSimdemics.

Plain and multilayer networks usually emerge in two
types of large-scale agent-based models. In the first type, the
network represents the environment, often static, in which
agents are assigned to the vertices of the network and can
relocate only to the neighboring vertices in each step. Such
models are common in transportation modelling [36]. In the
second type, the plain network corresponds to the evolv-
ing agent-to-agent (A2A) network which either stems from
reduction of SCN [5], [47] or represents aspatial (“soup”)
model of social connections per-se.

Interconnected geo-social networks (IGSN) combine
idea of SCN and multilayer networks [28]. IGSN G =
(GS , GL, I) consists of two graph layers – geographic GL =
(VL, EL) and social GS = (VA, EA) – with the interlayer
edge set I . This group of networked agent-based models is
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less studied compared to the former three.
During the last decade, researchers developed a vast

number of HPC compliant codes to support the imple-
mentation of agent-based models, a thorough review of
which lies beyond the scope of this paper. Instead, we
briefly review state-of-the-art tools commonly used to im-
plement networked ABMs. For an overview of parallel
and distributed agent-based systems (PDABS), we refer the
interested readers to [30], [40], [1]. In [51], authors survey
ABMS using hardware accelerators. RepastHPC and D-
MASON constitute the two most popular general-purpose
PDABS suitable for networked agent-based simulations.
Written in C++03 with MPI-based communication layer,
RepastHPC has formally all components required to build
networked ABMs. An example of large population simula-
tion with RepastHPC is presented in [3]. Nevertheless, the
latest version of RepastHPC neglects some optimizations
such as agent decomposition [50] and recent advances in
high-performance data structures (e.g., new techniques for
handling evolving graphs and modern implementations
of hash tables). In [9], [11], the authors report the scala-
bility of RepastHPC on basic networked models to 32K
cores. D-MASON is a distributed version of Java-based
MASON framework with MPI communication layer [13]
which scales to hundreds of logical processes [13], [49]. It
suites for implementation of ABMs with plain and multi-
layer networks and offers out-of-the-box integration with
GIS. In many occasions, ABMs with plain networks can
be efficiently implemented on top of highly optimized dis-
tributed graph-parallel frameworks like PowerGraph [23],
GraphX [24], GraphChi [31], and Ligra [43].

3 METHODOLOGY

The Flee agent-based modeling code calculates the daily
movement of displaced agents. Agents are explicitly re-
solved as Python objects, while the spatial environment is
represented with a location graph. On this location graph,
nodes are used to indicate conflict zones, camps, and other
settlements of note. The nodes are interconnected using
edges, which represent roads in most cases (and similarly-
structured walking routes in a few exceptional cases). The
location graph is represented as an adjacency list: nodes
are resolved as Python objects, each holding a list of their
neighbouring nodes, all arranged as a list. Suleimenova
et al. [45] provide a detailed description of the algorithm,
including the flowcharts used for agent-decision making
as well as a detailed description of the “conflict” ruleset.
Within this paper, we also introduce a second “tension”
ruleset in some of our scalability benchmarks, which we
describe in further detail in Section 5.4.

When conflicts erupt, the agents rapidly move away
from the conflict zones in search of safe havens (typically
camps). This means that macroscopically the agent move-
ment patterns tend to have complex spatial characteristics
and are of highly varying intensities over time, while the
interaction between agents is only indirect. For instance, the
arrival of an agent in a camp may increase its occupancy,
which could then lead to a reduced likelihood of other
agents choosing that camp as a destination.

Most of the existing parallel ABS codes use a spatial
distribution of agents, with processes calculating sub-parts
of the spatial domain and only the agents residing there.
In particular, RepastHPC has been shown to run efficiently
across up to 32K cores for certain basic use cases using
this approach [10]. In our case, such an approach is not
entirely practical because the spatial movement patterns of
our agents are complex, fast, and often directed. This means
that agents would very frequently traverse (spatial) process
boundaries, which in turn leads to major load balancing is-
sues. We have designed an approach that uses a location and
agent parallelisation that is not based on spatial criteria, but
maintains the same (equal) agent and location distribution
throughout the simulation. Within Flee such an approach is
possible, because agents only interact indirectly with each
other (through updates of location states).

3.1 Outline of the PFlee Algorithm

Flee requires a range of input parameters, which specify
the environment and population of agents along with their
properties. The population is parameterized by the initial
number of refugee agents N and the number of new agents
inserted during the current time step Nnew. We note that
a time step in Flee-based simulations corresponds to a day,
we therefore use the terms time step and day interchangeably
in the remaining of this document. The pace of agents’
movement is governed by a maximum move speed per
day vmax and an awareness level A, which is the distance
(measured in number of link hops) an agent takes into
account when choosing a destination. The environment is
modelled by an attributed weighted graph of routes be-
tween locations GL := (VL, EL), called location graph. In
this graph, each vertex ` ∈ VL represents location and has
a tuple of attributes including location type and conflict
date. Each edge e := (u, v) ∈ EL corresponds to a direct
route connecting two locations u and v from VL and has
a positive-valued weight dG(e) ∈ R+ equal to the route
distance between u and v measured in kilometers. Note that
links of the location graph may be one or two-way and,
hence, GL may be directed or undirected depending on the
route system between locations.

A sequential version of the Flee algorithm is described in
Algorithm 1. In this Flee pseudocode, lines 1-12 correspond
to the evolve() function, which is the core function of
the Flee algorithm. The simulation starts at line 13, which
corresponds to the extraction of the geospatial information,
such as details about location – cities and camps – or border
closures, required for the simulation. In line 14, refugees
are assigned to the locations. Afterward, in lines 15-24, Flee
starts to assign and relocate the refugee agents each day
among all available camps on that day. In a nutshell, for
each day, new agents are added to a random conflict location
(lines 16-20). Then, agents are relocated to new locations
(lines 22-23). The probability of relocating is determined by
the move chance, which is location-dependent. In lines 2-7,
during the execution of the evolve() function, an agent
moves to a new location if a new location is selected by
a path selection process. By moving to a new location, the
refugee population for the old and new locations is updated.
In lines 8-11, if the agent traveled with a lower move speed
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on a particular day, then a new move chance calculation
(and possible move) is performed. The agent’s move speed
is no more than 200 km/day2.

A core assumption in Flee (both sequential and parallel)
currently is that agents do not communicate with each other
directly. Instead, the behavior of agents is partially deter-
mined by the state of locations, and in turn the behavior
of agents can lead to a change in location state as well.
For example, if an agent arrives in a camp that is close to
capacity, then the state of the camp location will change such
that it is even closer to its capacity (or in some cases even
reaching its capacity).

This simplifying assumption greatly reduces the com-
putational burden of Flee and simplifies the parallelization
scheme, which is described in detail in the following sub-
sections. However, if one were to use this parallelisation
scheme in a system where agents do directly interact with
each other, additional collective MPI operations would be
required during each time step. Essentially, our parallelisa-
tion scheme works very well for the Flee code, but for agent-
based systems where agents heavily interact directly with
each other on a local level, a more traditional parallelisation
with a spatial agent decomposition (as done e.g. in RePast
HPC) will result in higher performance.

In the next subsections, we show how to parallelize most
of the computation using a parallel approach and present a
parallel version of Flee algorithm, called PFlee. We do the
parallelization at two levels, namely Agent parallelization
(also called “classic mode”) and Agent+space parallelization
(also called “advanced mode” or ASP).

3.1.1 Agent parallelization

We start by explaining our basic approach to parallelize
agent-decision making which is the most expensive calcu-
lation component in our code. This approach is the cen-
tral component of PFlee and is applied both in this basic
algorithm and the more sophisticated ASP approach. We
parallelize the decision-making by distributing the agents
evenly across the processes. This is done through a simple
modification of the addAgentToConflictLocation()
function, presented in Algorithm 2. In this parallelization
approach, the location graph is replicated on each process.

In its simplest form, it is possible to only use agent-
parallelization. In agent parallelization, agents are dis-
tributed evenly among processes. Therefore, each process
holds the same number of Python objects of the Person
class of Flee.. The parallel version of the evolve() function,
which propagates the whole system by one timestep, works
as follows:

1) Update location scores (which determine the attractive-
ness of locations to agents). This is equivalent to line 2
in Algorithm 1.

2) Evolve all agents on the local process, using the Flee
ruleset. This is equivalent to lines 4-5 in Algorithm 1.

3) Aggregate the total number of agents per location
across processes, using one or more MPI_Allreduce

2. Authors have performed a range of sensitivity tests on agent’s
move speed and found that the simulation error increases when they
choose lower move speed limits while higher move speeds have lower
sensitivity on the simulation output [45].

functions. This is a parallelized version of the operation
in line 6 in Algorithm 1.

4) Complete the travel, for agents that have not done so
already. This corresponds to lines 9-10 in Algorithm 1.

5) Aggregate the total number of agents per location
across processes, using one or more MPI_Allreduce
functions. This is necessary in this parallelized version
of Flee, to have a global view of the agents in the
simulation, before moving to the next time step.

The total number of agents is aggregated using the
MPI_Allreduce collective operation. This can either be
done on a location-by-location basis (low latency mode), re-
sulting in one small MPI_Allreduce call for each location;
or in bulk, which requires a packing operation on each pro-
cess, followed by a single MPI_Allreduce to synchronize
all locations and an unpacking task (high latency mode).
In most but not all cases, the high latency mode is more
efficient than the low latency mode.

We note that the aggregation of the number of agents for
every location is a necessary step before an agent moves (i.e.,
in the case of moving an agent and in the case of examining
whether an agent has finished their travel), as the rules that
determine agent movements depend on the location scores
(updated within the updateLocationScores operation),
which in turn depend on the number of agents on each lo-
cation (updated when the updateLocationInfo function
is executed), along with other parameters. Although this
approach works well with a large number of agents and a
small location graph, the lack of location parallelization can
become a bottleneck for larger and medium-sized location
graphs.

3.1.2 Agent+space parallelization (ASP) and other paral-
lelization optimizations
To add an extra layer of parallelization to the computations
in Flee, we developed a more advanced algorithm that
distributes the responsibility of location updates across the
different processes. The parallel location update is depicted
in Algorithm 3. In this version of the algorithm, we dis-
tribute the list of locations, i.e. the vertices of the location
graph GL evenly across all processes (lines 1-7). Therefore,
each process holds the same number of Python objects of
the Location class of Flee. Note that, the location graph in
PFlee is an adjacency list, therefore each vertex also holds
a list of neighbouring vertices. Location states, i.e. location
scores, are replicated across processes, as they determine
the movement of agents. Each process updates the locations
assigned to it locally. Once all locations are updated, we
synchronize all the location scores across all processes (line
12), which requires one MPI_Allgatherv operation. This
operation is performed only once in the parallel version
of the evolve function, in the updateLocationScores
operation of Algorithm 1, and within step 1, as described
in Section 3.1.1. This operation is necessary so that all loca-
tions have the updated location scores for their neighboring
locations, which may belong to different processes.

3.2 Computational complexity
Besides Flee pseudocode, Algorithm 1 presents a compu-
tational complexity analysis for computational complexity
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Algorithm 1 Pseudocode and complexity analysis for the FLEE simulation algorithm.
Input:

• D : number of days for simulation
• N := N (0) : initial number of refugee agents (at day d = 0 of simulation)
• Nnew := E[∆N (d)] : average daily increase in the number of agents
• vmax : maximum move speed per day
• A : awareness level
• GL := (VL, EL) : location graph representing environment

cost times

1: function evolve( agents, GL, A)
2: updateLocationScores(GL) O

(
|VL|∆−(GL)

)
3: for each agent in agents

∑D
d=1N

(d)

4: new loc ← pathSelection(agent , GL, A) O (δ(`|A,GL))
5: moveAgent(agent ,new loc) O (1)
6: updateLocationInfo(new loc) O (1)
7: end for
8: for each agent in agents

∑D
d=1N

(d)

9: finishTravel(agent , GL, A) O ((S − 1) · δ(`|A,GL))
10: updateLocationInfo(new loc) O (1)
11: end for
12: end function

13: Extract locations (conflict zones, camps, etc) and routes information from input files
14: agents ← AddInitialRefugees(day = 0 , N) O (N) 1
15: for all day d ∈ [1 . . .D ] D
16: AddNewConflictZones(day = d , GL) O (|VL|)
17: new agents ← DailyNewRefugees(day = d , Nnew) O(∆N (d))

18: for each agent in new agents
∑D

d=1 ∆N (d)

19: addAgentToConflictLocation(agent , `) O (1)
20: end for
21: agents ← agents + new agents O(∆N (d))
22: enactBorderClosures(day = d , GL) O (|EL|)
23: evolve(agents,GL,A)
24: end for

Algorithm 2 Parallel agent distribution in Flee

def addAgentToConflictLocation(self, location):
self.total_agents += 1
if self.total_agents % self.mpi.size == self.mpi.rank:
self.agents.append(Person(location))

Algorithm 3 Parallel location update in Flee

1 locations_per_rank = int(len(locations) / mpi.size)
2 lpr_remainder = int(len(locations) % mpi.size)
3
4 offset = int(mpi.rank) * int(locations_per_rank) + int(min(

↪→ mpi.rank, lpr_remainder))
5
6 if mpi.rank < lpr_remainder:
7 locations_per_rank += 1
8
9 for i in range(offset, offset + locations_per_rank):

10 locations[i].updateAllScores(self.time)
11
12 synchronize_locations(offset, offset + locations_per_rank)

of its building blocks. In this analysis, we denote N (d) a
number of refugees and ∆N (d) = N (d)−N (d−1) an increase
in refugee amount at day d. We also assume that the number
of refugees monotonically increases as the conflict develops,
thus, ∆N (d) ≥ 0.

The computation of the PFlee involves two major con-
tributors to the overall complexity: (i) agents computing
new directions to move and (ii) locations updating infor-

mation on agents arrival. The former dominates in the com-
putational costs, while the latter defines the communication
overhead of the parallel implementations.

In order to decide on the new direction to move (line
11), each agent should evaluate a set of paths starting at
the current location `. The number of paths to evaluate
δ(`|A,GL) generally depends on the awareness level of the
agent and structure of the location graph GL. On the one
hand, δ(`|A,GL) is bounded by the number of possible
destinations in the location graph |VL| − 1. On the other
hand, its quantity cannot exceed the total number of paths
from ` with a length less than equal to A. Since agent with
no awareness selects future destination randomly in O (1)
time, we presume δ(`|0, GL) = 1. Taking into account that
the total number of paths of length a from the given location
` always remains below ∆−(G)a for any graph G, where
∆−(G) is a maximum out-degree in G, we obtain for A > 0:

δ(`|A,GL) ≤
A∑

a=1

∆−(GL)a =
∆−(GL)

∆−(GL)− 1
(∆−(GL)A−1)

and, hence, δ(`|A,GL) = O
(
min

{
|VL|,∆−(GL)A

})
. Note

that in certain situations, agent can target S > 1 hops in a
single day (line 9 of Algorithm 1). In these cases, we must
repeat the decision-making process for such agents S − 1
times to finish a day simulation. Even though the theoret-
ical maximum of S is upper bounded by the ratio of the
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maximum movement speed to the length of the shortest link
between locations vmax/mine∈EL dG(e), which can be high,
in practice, there are seldom agents that will perform more
than two hops in a single time step, due to the assumptions
currently used in the code. Therefore, for the performance
modelling purposes, one can usually assume that S < 3,
depending on the chosen ABM rule set, and, thus, S can be
excluded from the complexity analysis as a small constant
factor. Under this assumption, we estimate the contribution
of an agent to the computational complexity per simulation
day by

O (S · δ(`|A,GL)) = O
(

min
{
|VL|,∆−(GL)A

})
(1)

By denoting N = N (0) as the initial number of agents
and Nnew = E[∆N (d)] as the average daily increase in the
number of agents, after summing up contributions (1) over
all agents and D simulation days, we obtain the following
approximation for the time complexity of Flee simulation:

O
(

D∑
d=1

N (d) max
`∈VL

δ(`|A,GL) +
D∑

d=1

O
(
|VL|∆−(GL)

))
=

O
(

max
`∈VL

δ(`|A,GL)

(
DN +

D∑
d=1

(D − d+ 1)∆N (d)

))
+O

(
D|VL|∆−(GL)

)
=

O
(
D

(
N +

D + 1

2
Nnew

)
min

{
|VL|,∆−(GL)A

})
+O

(
D|VL|∆−(GL)

)
Since in practice the overall number of new agents in

the simulation N (D) − N rarely exceeds the initial number
of agents N , or equivalently Nnew = O(N/D), the total
computational complexity can BE further simplified to

O
(
D
(
N ×min

{
|VL|,∆−(GL)A

}
+ |VL|∆−(GL

))
This formula has a simple interpretation: computational
costs of the Algorithm 1 are proportional to the number of
simulation steps, the number of agents, and the complexity
of the decision rules which are determined by the structure
of the location graph.

For the agent-parallel version, the number of agents N
in the above formula is replaced by dN (d)/pe, where p is
the number of cores/processes used. Additionally, for the
agent-space parallel version, the number of nodes |VL| is
replaced by d|V |L|/pe, where p is the number of cores/pro-
cesses used.

3.3 Communication costs

The main communication and synchronization logic is en-
capsulated in the method evolve of the object instances
from class Ecosystem. This method is called at each itera-
tion of the PFlee algorithm. It includes the following steps
that require collective communication operations: synchro-
nization of locations (method synchronize_locations),
synchronization of spawn counts, and updating agent
counts (method updateNumAgents). The evolve method
calls the synchronize_locations method in the ASP
mode (loc-par parallel mode). This operation uses

MPI_Allgatherv to merge chunks of double-precision
floating point arrays of size k · (|VL|/p) from each pro-
cess into a single array, where k denotes the number
of scores per location. Synchronization of spawn counts
requires a single call of MPI_Allreduce for integer ar-
rays with |VL| elements. evolve calls updated the num-
ber of agents twice: after evolving agents (select path
and move) and after finishing agent traveling. In the
high_latency mode, updateNumAgents requires a sin-
gle call of MPI_Allreduce for integer arrays with the total
number of elements equal to:∑

`∈VL

(1 + |links(`)|+ |closed links(`)|) ≤ |VL|+ |EL|.

The communication costs are summarized in Table 1.

MPI collective Data type Chunk size Times
MPI_Allgatherv DOUBLE k · |VL|/P D
MPI_Allreduce INT |VL| D
MPI_Allreduce INT |VL|+ |EL| 2D

TABLE 1: Communication costs of the parallel algorithm

4 NUMBA-BASED PERFORMANCE OPTIMIZATION

To elevate the performance of PFlee beyond the limits of
the standard Python interpreter, we employ the Numba
[37] python library to optimize hotspots. A preliminary
performance analysis of Flee allowed us to identify the
critical parts of the code that jointly consume more than
35% of the total runtime. These parts refer to three functions
of the Flee code and are mainly associated with generating
random values with probability support.

More precisely, all selected functions are respon-
sible for calculating the probability that a moving
agent will select a given route, and for making
the probabilistic route selection. In this case, the 1st
function, called CalculateLinkWeight determines the
weights of each adjacent link. The 2nd function (called
NormalizeWeights) normalizes the weights. The last
RandChoice function returns the eventual movement de-
cision made. Table 2 indicates the percentage of total com-
putation time that the Flee application spent executing a
given Kernel for South Sudan case using a single node with
two AMD EPYC 7742 processors.

Function 1 2 3 In total
Percentage [%] 16.80 8.41 10.68 35.89

TABLE 2: Percentage of the total execution time of hotspots
measured for the case of South Sudan on a single node with
two AMD EPYC 7742 CPUs

All functions are eligible for performance improvements
by Numba, allowing their compilation processes to succeed.
Every selected part of code is marked as Numba functions
and translated into machine codes during application
execution (just-in-time compilation). As a result, every
function compiled once is used tens of millions of times in
a typical simulation run.
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To examine the proposed approach, we utilize a single
node with two AMD EPYC 7742 processors and the case of
South Sudan. Enabling Numba-based modification for PFlee
reduces the total execution time and improves the over-
all performance achieving a speedup of about 1.44x. The
applied analysis also indicates a significant performance
improvement for the 2nd and 3rd functions. In this case, em-
ploying Numba leads to about 10.8x and up to 11.6x faster
execution of the NormalizeWeights and RandChoice
functions, respectively. In contrast, the 1st function with
Numba enabled accelerates computations of about 1.1x.

5 PERFORMANCE EVALUATION

We evaluate the PFlee agent-based modeling code under
different synthetic and real-world execution scenarios, on
two supercomputers, with different architectures:
• Hawk at HLRS3 consists of 5632 compute nodes, two

AMD EPYC Rome 77242 CPUs of 64 cores each, at
2.25GHz, and 256GB of RAM, interconnected with In-
finiBand HDR.

• Altair at PSNC4 consists of 1320 compute nodes, with
two Intel Xeon Platinum 8268 CPUs of 24 cores each, at
2.9GHz, with 192 GB RAM each, interconnected with
InfiniBand EDR.

On Hawk, PFlee runs using Python 3.8.3 and MPI MPT
2.23, used with mpi4py 3.0.3 for parallelization. On Altair,
PFlee runs with Python 3.7.3 and OpenMPI 4.0.0, used with
mpi4py 3.0.3. Additionally, the Flee code uses the Python
libraries NumPy (1.19.0 on Hawk, 1.18.1 on Altair), SciPy
(1.5.0 on Hawk, 1.4.1 on Altair), and Numba 0.55.1 for the
optimized version of the code.

5.1 Datasets
5.1.1 Synthetic datasets
In our evaluation, we use synthetic inputs to exhaustively
evaluate the scalability of PFlee. Real-world datasets refer to
specific scenarios where the location graph and the number
of agents are preset. Our synthetic inputs include synthet-
ically generated location graphs, which are 2-dimensional
grids of locations. The synthetic location graphs are regular
(with a constant node degree) and the weights of the graph
are randomly generated. The synthetic graphs are denoted
by V1 − V2 − vd, where V1 × V2 are the nodes of the
graph and vd is the constant node degree. In these synthetic
datasets, we also set the initial number of agents N , which
are initially randomly distributed to the nodes of the graph
denoted as conflict locations. New conflict zones are added
at various timesteps, at existing locations of the graph.

5.1.2 Real datasets
For the real datasets, we used two conflict scenarios: the
cases of South Sudan and Nigeria. The South Sudan civil war
started in December 2013 between forces of the government
and opposition forces. About 400,000 people were estimated
to have been killed in the war by April 2018 and more than

3. HLRS is the High-Performance Computing Center Stuttgart, in
Germany.

4. PSNC is the Poznan Supercomputing and Networking Center, in
Poland.

2.3 million people have been displaced forcibly since the
start of the conflict. For this scenario, because the situation
suddenly got worse during this period, we studied 426
days between 1st of July 2016 till 31st of June 2017, covering
almost one million refugees. In the extracted location graph
from the available data sources, such as UNHCR data
portal, ACLED (Armed Conflict Location and Event Data
Project), and OSM (Open Street Map), there are 76 conflict
locations, 18 camps in neighboring countries, 39 towns, and
171 routes between them.

In 2014, violent attacks by the Islamist group Boko
Haram started to spill over Nigeria’s north-eastern fron-
tier and the neighboring countries, Cameroon, Chad, and
Niger, which have been drawn into what has become a
devastating regional conflict. For this conflict scenario that
forced over 3.2 million people to displace, the simulation
period starts on 1st of March 2016 and ends on 20th of
April 2021 (1887 days) because the number of refugees in
neighboring countries surged in the first quarter of 2016.
The extracted location graph of this scenario includes 47
conflict locations, 8 camps, 3 towns, and 64 routes between
them. Furthermore, more than 300,000 agents’ (refugees’)
movements were simulated in this scenario.

5.2 Impact of parallelization and optimization
We first evaluate the agent-parallel (AP) and agent-space-
parallel (ASP) parallelization modes of Flee, as well as the
performance impact of using the Numba library in Python,
on a synthetic, large-scale simulation scenario, with 100
million agents (N = 108) on the synthetic 50 − 50 − 4
graph, for 100 epochs, on 4 up to 64 nodes on Hawk and
4 up to 32 nodes Altair. Note that the cores per node are
different on the two systems, thus simulations on Hawk
correspond to 512 up to 8192 cores, while simulations
on Altair correspond to 192 up to 1536 cores. The results
in Figure 2 (x-axis is logarithmic) first indicate that using
Numba boosts the performance of PFlee on both systems.
Numba manages to decrease execution time by about 50%.
Additionally, the ASP mode significantly outperforms the
AP mode, due to location parallelization and the more
efficient bundling of messages. The performance gains
become more evident as the number of cores increases;
ASP improves PFlee scalability. For the particular execution
scenario, on 32 nodes, the performance improvement from
location parallelization is 20% on both systems.

5.3 Scalability analysis using synthetic datasets
We subsequently evaluate the scalability of PFlee using
synthetic datasets, on 4 up to 64 nodes on Hawk and Altair.
We focus on the ASP parallelization mode of PFlee and use
the Numba library. We examine two different cases. In the
first case, we use a synthetic 50− 50− 4 graph as the input
and vary the initial number of agents in the simulation.
In the second case, we fix the initial number of agents
in the simulation to 100 million (N = 108) and perform
simulations with different synthetic graphs as input. In both
cases, no new agents are added in the simulation at any
subsequent epoch, and simulations run for 100 epochs each.

Figure 3 (both axes are logarithmic) demonstrates the
results for the two cases. In Figure 3a, we vary the number of
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Fig. 2: Comparison between the agent-parallel (AP) and
agent-space parallel (ASP) modes of PFlee, with and with-
out Numba (’numba’ / ’naive’), on a synthetic 50-50-4 graph
with 100 million agents, for 100 epochs, on Hawk and Altair.

initial agents from 10 million to 1 billion, with the 50−50−4
graph as input. First, we observe that execution time is
proportional to the number of agents in the simulation.
Second, we observe that, in both systems, scalability is better
with higher numbers of agents, since the higher number of
agents impacts the computation-to-communication ratio of
the simulation, in favor of computation. This is also evident
in the case of 10 million agents, where scalability breaks on
both Hawk and Altair when the number of nodes increases
to more than 16. Additionally, while Altair offers better
execution times on lower numbers of processes than Hawk,
in the case of 10 million agents, its performance deteriorates
faster because of more inter-node communication. This ef-
fect occurs due to the lower number of cores per node on
Altair, as well as due to the reduced computational work
per process, as Altair cores are faster.

In Figure 3b, we plot the performance of PFlee for
100 million agents, with three different input graphs,
10 − 10 − 4, 50 − 50 − 4, and 100 − 100 − 8, with 100,
2500, and 10000 nodes respectively. First, we observe that,
as in the case of scaling the number of agents, the size of
the graph impacts the total execution time, however, the
increase is not proportional to the size of the graph (in
number of graph nodes). For the smaller graph, we observe
excellent scalability for PFlee on Altair, while on Hawk, we
observe that the scalability reduces when we move from 32
to 64 nodes, for the two smaller graphs, 10 − 10 − 4 and
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Fig. 3: Evaluating the effect of varying numbers of agents
and the effect of varying the input graph on the execution
time of PFlee, for 100 epochs, on Hawk and Altair.

50− 50− 4. For the larger 100− 100− 8 graph, we observe
less scalable execution of PFlee on both systems, however,
we also note that execution time on Altair is increased
for more than 16 nodes, where inter-node communication
becomes more impactful in the total execution time. In
practice, larger graphs favor the selection of Hawk, where
the high number of cores per node helps in containing the
more costly inter-node communication. Finally, we do not
observe any breaks in the scalability of PFlee.

5.4 Scalability analysis using real datasets
We finally evaluate the performance of PFlee on Hawk
and Altair for the two real datasets, namely the cases of
South Sudan and Nigeria, to assess the execution time and
scalability of Flee on these and similar realistic scenarios.
We also leverage the real datasets to showcase the flexibility
of the ruleset implementation in Flee. Figures 4 and 5
demonstrate the execution time of PFlee on up to 8 nodes
on Hawk (1-1024 cores) and Altair (1-384 cores), using the
following two rulesets:
• Conflict: The base ruleset, as described in [45] and in

Section 3.
• Tension: A ”tension-migration” ruleset, where agents

have a much wider awareness of their surroundings,
and where conflict zones are replaced by tension zones,
which have a lower move chance, i.e. lower probability
for an agent traversing a link. Normal towns also have
a reduced ruleset. In this case, the awareness level A is
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Fig. 4: Evaluating the execution time of PFlee for two differ-
ent simulation scenarios for South Sudan; a full conflict mi-
gration scenario and a less immediate movement scenario,
based on areas of tension rather than violent conflict, for the
same duration of 426 days, on Hawk and Altair.

set to 5 instead of 1, leading to a larger computational
complexity.

For both rulesets, we observe a similar trend in the
scalability of PFlee, with a minor overhead on the execution
time of the Conflict ruleset, attributed to the difference in the
move chance between the two scenarios. We can thus safely
assume that the parallel performance of PFlee is robust
and independent of the ruleset. It is worth annotating that
the South Sudan case involves a small number of agents
(fewer than 1 million), therefore there is limited granularity
per process and limited potential performance gains from
scaling this particular scenario on more cores. Additionally,
we observe similar performance trends in both systems.

6 SCIENTIFIC RESULTS (USE CASE(S))
To investigate the behavior of PFlee from a migration
research perspective, we present the predicted arrival
rates for the two largest camps in each conflict, for South
Sudan and Nigeria, in Figure 6. Both these scenarios are
historical conflicts, where people were forced to leave their
home locations due to violence. We provide the number
of arrivals for each camp (according to UNHCR data) and
compare this with the PFlee simulation results using the
two rulesets. As we can see, the results from the conflict
ruleset correspond well with the UNHCR data in the case
of the largest camp in South Sudan (Rhino) and Nigeria
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Fig. 5: Evaluating the execution time of PFlee for two differ-
ent simulation scenarios for Nigeria; a full conflict migration
scenario and a less immediate movement scenario, based on
areas of tension rather than violent conflict, for the same
duration of 1887 days, on Hawk and Altair.

(Diffa), and the conflict ruleset provides more accurate
results when we look at the average differences across
all four camps. However, because the code overpredicts
arrivals for the two second-largest camps (Adjumani and
Minawao), we observe that the tension ruleset leads to
slightly more accurate results for those camps.

The quicker turnaround time offered by parallelization
and HPC execution provides us with several benefits: (i)
it provides us with the memory required to simulate with
much higher numbers of agents (and more complex ones),
(ii) it reduces the time to completion, allowing us to more
quickly make forecasts, and (iii) it enables us to experiment
with more advanced decision-making algorithms with
minor impact on the time completion. In addition to
the benefits of parallel execution, HPC environments are
also ideal to facilitate ensembles of many simulations, for
instance, to forecast across a wide range of conflict scenarios
or to assess the sensitivity of the main results to specific
assumptions in the code.

6.1 Reuse potential
The main purpose of the Flee model is to provide forecasts
of the arrivals of forcibly displaced human populations. To
do this, the code relies on an iterative agent-based decision-
making algorithm and a location graph which consists of
locations (vertices) and routes (edges). The amount of direct
interactions between agents needs to be relatively infrequent
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Fig. 6: Comparison of arrivals between simulated results
with PFlee with two scenarios, and UNHCR data, in four
camps, Rhino and Adjumani, for the case of South Sudan,
and Diffa and Minawao, for the case of Nigeria.

(e.g., once per time step) for the code to retain scalability.
Indeed, currently for migration modeling, most effects are
resolved indirectly through agents modifying the properties
of specific locations and routes.

In terms of re-use, PFlee naturally lends itself well to re-
lated migration challenges, such as forecasting longer-term
human migration or even the migration of other species.
In these cases, the decision-making ruleset will need to be
revised, as well as the properties of the location and path ob-
jects, but the parallelization approach can be retained. There
are three examples where we are making such adaptations.
First, we have made a modified version of Flee that incorpo-
rates food insecurity [7]; extending such an implementation
to one that models migration primarily driven by starvation
rather than conflict is relatively straightforward. Second,
we are currently adapting the Flee algorithm to model the
movements of goods between locations, in collaboration

with the STAMINA consortium 5. Third, in collaboration
with ECMWF6 we are adapting Flee to model migration
driven by weather and climate effects.

PFlee may also be re-engineered for some other scientific
purposes, although we have not undertaken research in
these directions as of this time. Feasible areas could include
for instance the modeling of trade, pandemics (in a large
scale, approximate, manner), and the effects of education.
PFlee is generally not an appropriate solution for mod-
eling processes that are strongly communication-driven.
Examples of these include the propagation of knowledge
across communities and the spread of infectious diseases
on a local, individualized level. To specifically address the
latter challenge, we instead developed a different simulation
kernel (the Flu And Coronavirus Simulator [33], [35]) which
is better suited to efficiently calculate the outcomes of large
numbers of interpersonal interactions.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we presented a parallelized human migration
simulation tool, PFlee, that facilitates the understanding of
mechanisms governing the movement of people. It also
enables us to explore the simulation of societies as com-
plex adaptive non-linear systems, which are difficult to
study with classical mathematical equation-based models.
We described two levels of parallelization in PFlee: agent
and agent+space parallelization. We investigated the com-
putational complexity of these parallelization schemes, and
have shown that the complexity of the algorithm is largely
dependent on the number of agents (current and new), the
number of locations and simulated days, as well as the max-
imum movement speed. We presented a scalability study
using two supercomputers and a large synthetic graph for
varying numbers of simulation agents. We observed near-
linear scalability in classic and advanced modes, sometimes
up to 1,000s of cores. Moreover, we evaluated the execution
time for two different South Sudan simulation scenarios: a
full conflict migration scenario and a less immediate danger
movement, observing significant efficiency up to 32 cores.

Going forward, we seek to focus on several areas: first,
we aim to improve the output infrastructure to enable more
sophisticated debugging and validation investigations,
second we want to extend the ruleset so that we can more
realistically model mixtures of refugees with IDPs in our
simulations, third we want to incorporate the movements
of other relevant objects in Flee where relevant, e.g. the
movement of goods in situations where supply chains
or trade movements may become relevant for the overall
population dynamics. Lastly, we aim to apply Flee to
directly contribute to the humanitarian support in ongoing
conflicts and are currently in the process of doing so in the
context of Ethiopia.
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