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Abstract. The convergence of HPC and Big Data along with the influ-
ence of Cloud are playing an important role in the democratization of
HPC. The increasing needs of Data Analytics in computational power
has added new fields of interest for the HPC facilities but also new prob-
lematics such as interoperability with Cloud and ease of use. Besides the
typical HPC applications, these infrastructures are now asked to han-
dle more complex workflows combining Machine Learning, Big Data and
HPC. This brings challenges on the resource management, scheduling
and environment deployment layers. Hence, enhancements are needed to
allow multiple frameworks to be deployed under common system man-
agement while providing the right abstraction to facilitate adoption.
This paper presents the architecture adopted for the parallel and dis-
tributed execution management software stack of Cybele EU funded
project which is put in place on production HPC centers to execute
hybrid data analytics workflows in the context of precision agriculture
and livestock farming applications. The design is based on: Kubernetes
as a higher level orchestrator of Big Data components, hybrid workflows
and a common interface to submit HPC or Big Data jobs; Slurm or
Torque for HPC resource management; and Singularity containerization
platform for the dynamic deployment of the different Data Analytics
frameworks on HPC. The paper showcases precision agriculture work-
flows being executed upon the architecture and provides some initial
performance evaluation results and insights for the whole prototype de-
sign.

1 Introduction

High Performance Computing has been traditionally used for scientific comput-
ing to solve complex problems which require extreme amounts of computation.
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HPC is designed with performance as principal focus, leveraging on supercom-
puters along with parallel and distributed processing techniques. The rise of Big
Data came with an increasing adoption of data analytics and Artificial Intelli-
gence in modern applications that make use of data-driven models and analy-
sis engines to facilitate the extraction of valuable insights. Big Data Analytics
utilize Cloud data-centers which provide elastic environments based on com-
modity hardware and adapted software; while instead of performance they focus
on flexibility and programming simplicity. Containerization, based on Docker,
has greatly improved the productivity and simplicity of Cloud technologies; and
together with the advanced orchestration, introduced through systems such as
Kubernetes, enabled the adoption of Big Data software by a large community.

Today, Big Data Analytics are becoming more compute-intensive, mainly due
to AI and in particular Deep Learning, while needing extremely-fast knowledge
extraction for rapid and accurate decisions. The convergence of HPC and Big
Data, especially regarding systems software, resource management and program-
ming, is an important concern which appears as top research objective in the
Strategic Research Agenda (SRA4) of HPC in Europe as published by ETP4HPC
[1].

Big Data analytics are applied extensively, under the digitalization efforts,
in various industries such as pharmaceutics, construction, automotive but also
agriculture and farming. Supercomputers and HPC can be of great benefit to
Big Data Applications since large datasets can be processed in timely manner.
But the steep learning curve of HPC systems software and parallel programming
techniques along with the rigid environment deployment and resource manage-
ment remain an important obstacle towards the usage of HPC for Big Data
analytics. In addition, the usage of classic Cloud and Big Data tools for con-
tainerization and orchestration cannot be applied directly on the HPC systems
because of security and performance drawbacks. Hence workflows mixing HPC
and Big Data executions cannot be yet combined intelligently using off-the-shelf
software.

CYBELE [2] is an EU funded project which aims to provide solutions to
the above issues. It brings a prototype architecture combining HPC and Big
Data hardware and software tools to enable the deployment of data analytics
workflows, in the context of precision agriculture and livestock farming. CY-
BELE proposes a suite of Cloud-level tools combined with Big Data and HPC
systems software and adapted techniques to bring the right abstractions to data
scientists with non-HPC systems expertise to optimally leverage HPC platforms.
CYBELE disposes four production HPC platforms across Europe upon which
a complete set of demonstrators8 will be rolled-out, covering 9 topics in total:
from protein-content prediction in organic soya yields, to climate smart predic-
tive models, to autonomous robotic systems, to crop yield forecasting, down to
sustainable livestock production, aquaculture and open sea fishing.

This paper focuses on the systems software layer and in particular on the ba-
sic building blocks of the parallel and distributed execution management tools

8 https://www.cybele-project.eu/demonstrators
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used in CYBELE. However, the described tools and techniques can be used in
any case where Big Data Analytics need to be executed on HPC platforms.
We consider an architecture featuring one Big Data partition composed of VMs
managed by Kubernetes, using a mix of Docker and Singularity runtimes for
containerization, along with one HPC partition, as the typical HPC production
system, composed of baremetal machines managed by Slurm or Torque, using
only Singularity containerization. The contributions of this paper are the follow-
ing:

– Meta-scheduling and resource abstraction techniques enabling first the exe-
cution of Big Data Analytics as batch jobs on Slurm or Torque managed HPC
partitions, through a Kubernetes micro-service submission based on singu-
larity containers and wlm-operator software adapted for multi-user support;
and second the possibility to deploy Big Data Analytics and Cloud-level tools
such as workflow managers and databases on the VMs of the Big Data parti-
tions, using the typical Kubernetes API. The deployed Cloud-level tools will
provide the needed abstractions to non-HPC experts for the Data Analytics
execution on the underlying HPC-Big Data hybrid system.

– An Environment deployment tool for the creation of customizable environ-
ments based on singularity containerization and a specialized repository with
pre-built images featuring Big Data and AI frameworks (such as Pytorch,
Tensorflow and Horovod) for specific HPC resources (such as GPUs and
Infiniband).

The reminder of the paper goes as follows: section 2 provides the related work,
section 3 describes the Meta-scheduling and resource abstraction techniques,
Section 4 presents the Environment Deployment tool, section 5 the validation
using precision agriculture data analytics and finally section 6 the Conclusions
and Future Works.

2 Related Work

2.1 Resource Management and Orchestration

Older state-of-the-art HPC resource managers such as Slurm[12] and Torque do
not provide integrated support for environment provisioning and hence no or-
chestration[4] is feasible. However, newer resource managers such as Mesos9 and
Kubernetes 10 enable the deployment of containers and allow the applications’
lifecycle management. Another widely used orchestrator with limited capabilities
but simplicity in usage is Docker Swarm11. Kubernetes[5] is the de-facto standard
for Cloud and Big Data orchestration, it has a rapidly growing community and
ecosystem with plenty of platforms being developed upon it. Kubernetes simpli-
fies the deployment and management of containerized applications. It is based on

9 https://github.com/apache/mesos
10 https://github.com/kubernetes/kubernetes
11 https://github.com/docker/classicswarm
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a highly modular architecture which abstracts the underlying infrastructure and
allows internal customizations such as deployment of different software defined
networking or storage solutions. It supports various Big Data frameworks such
as Hadoop MapReduce, Spark and Kafka and has a powerful set of tools to ex-
press the application lifecycle considering parameterized redeployment in case of
failures, auto-scaling, state management, etc. Furthermore, it provides advanced
scheduling capabilities and the possibility to express different schedulers per job.

2.2 Containerization in HPC

Containers have recently started to be applied on HPC clusters. HPC applica-
tions are hardware specific, and their applications are often specifically optimized
for the nodes. Considering that performance is the focus for HPC applications,
it poses the key question for massive usage of containerized applications on HPC
cluster [6], [7], [8]. Nevertheless, the flexibility of containerization principles and
the productivity advantages makes them very interesting for HPC. Singularity12

[13] is a technology that bears all the benefits of Bring-Your-Own-Environment,
composability and portability, also matching the security requirements in HPC
environments. While Docker[11] is the popular approach for containerization in
cloud environments, it poses security implications when it comes to HPC cen-
ters: Docker allows root user operation, which can lead to privilege escalation. In
addition, Docker containers rely on Docker daemon, which requires root access.
Rootless mode for the Docker daemon is still experimental. On the other hand,
Singularity is a container technology that has been designed for use on HPC sys-
tems [14]. Singularity containers do not rely on a daemon for execution and are
executed as child processes. Moreover, the user within a Singularity container
is the same user as the user of the host system who executes the container,
with the same privileges, thus preventing privilege escalation. Regarding the
transparent use of resources, Singularity also provides native support for MPI
and GPUs. Udocker13 is another basic user tool (written in Python) to execute
simple Docker containers in user space without requiring root privileges.

3 Orchestration and Resources Abstraction in HPC

For the execution of Data Analytics on supercomputers we propose a combina-
tion of Big Data, HPC and Cloud tools. The meta-scheduling and orchestration
tasks are based upon Kubernetes. The first role of Kubernetes, in that context, is
to allow the deployment of either Big Data (ML, DL, etc) or HPC (MPI-based)
workloads upon Big Data or HPC platforms through the same command line
interface (kubectl) or API (Kubernetes API) making use of a common represen-
tation using YAML language. The deployment on the Big Data platforms can
be done directly through this API. The deployment on the HPC platforms pass

12 https://github.com/sylabs/singularity
13 https://github.com/indigo-dc/udocker
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through the integration of a specific existing open-source software named wlm-
operator14 which has been adopted and extended to fit our needs. The software
wlm-operator, allows the submission of a job on the dedicated HPC resource
manager (Slurm or Torque) by using the Singularity containerization. Kuber-
netes will also perform resource management and containers orchestration on
the Big Data platforms of the supercomputing centers, enabling typical widely
used cloud-native software, to be introduced to supercomputers. This is the case
of the various Cloud services for which, as we can see on figure 1, the resource
abstraction is provided through the help of Kubernetes.

Fig. 1. Architecture for Big Data Analytics on hybrid HPC-Big Data platforms

3.1 Kubernetes and Container Runtimes

Kubernetes controls the deployment lifecycle of containerized applications while
managing distributed systems resiliently. Another important part is the resources
abstraction through the containerization platform used. As the matter of fact,
Kubernetes introduced pods, which specify the resources utilized by a group of
application containers. At run time, a pod’s containers are instances of container
images, packaged and distributed through container image registries. The usage
of a containerization platform on Kubernetes goes through the support of spe-
cialized Container Runtime Interface (CRI) which has to comply on the Open

14 https://sylabs.io/guides/cri/1.0/user-guide/k8s.html
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Container Interface (OCI) standards. Kubernetes uses by default Docker and its
specialized CRI, which is the traditional choice and supported out-of-the box by
most cloud-Native software. Docker runtime will be used on Big Data partitions
to deploy Cloud services which will then be used to abstract the complexity
of deploying experiments on hybrid HPC/BD platforms. For the actual execu-
tion of the Big Data Analytics which can take place either on the Big Data or
the HPC partition, we adopt Singularity platform. The maintainers of Singular-
ity have proposed Singularity CRI 15 to allow the usage of Singularity for the
pods runtime within Kubernetes and the particular mechanism wlm-operator16

which can enable the direct connection between Kubernetes pods and execution
on HPC partition through Singularity containers. .

In the installation and configuration phase of each worker we need to dis-
tinguish the nodes that will use Singularity or Docker as runtime. To perform
a rightly matched scheduling we need to define specific label per node to show
which runtime is used and then on the application submission (yaml of the pod)
we need to provide the right node-selector to determine the need in terms of
runtime and divert the pod to be scheduled on the right node. As shown in fig-
ure 1 the workers with Docker runtime will be used to deploy the Cloud services
while those with Singularity will allow the deployment of BD/HPC workloads.

3.2 Integration of Kubernetes and Slurm/Torque with multi-user
support

At least one of the Kubernetes workers that will be deployed with Singularity
runtime will also need to have Slurm or Torque login nodes capabilities, which
will enable the connection with the HPC cluster. This means that from that
worker node we should have the capability to run Slurm or Torque commands
and in particular job submissions. Based on that we have installed and deployed
the wlm-operator software which will open a communication protocol with the
Slurm or Torque Resource Manager to submit and monitor containerized HPC
jobs through Kubernetes API. The wlm-operator integrates with Slurm by de-
fault but in the context of our project and to respect the needs of a particular
testbed we have extended it to also support Torque. Furthermore we have en-
hanced the mechanism of wlm-operator with multi-user support. The prerequi-
sites of wlm-operator software are to have Singularity-CRI runtime on at least
the Kubernetes worker node with the Slurm (or Torque) login capabilities and
Singularity software installed on all HPC compute nodes to manage container-
ization on the HPC side.

The wlm-operator software can automatically discover Slurm partition re-
sources (CPUs, memory, nodes, wall-time) and propagates them as node labels
to Kubernetes by creating one virtual node (virtual-kubelet) per partition. For
this the virtual-kubelet technique is used internally 17. Similar procedure is fol-
lowed for Torque queues. Each Slurm partition (or Torque queue) is represented

15 https://github.com/sylabs/singularity-cri
16 https://github.com/sylabs/wlm-operator
17 https://github.com/virtual-kubelet/virtual-kubelet
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as a dedicated virtual node in Kubernetes. Those node labels will be respected
during Slurm job scheduling so that a job will appear only on a suitable parti-
tion with enough resources. The communication protocol between Kubernetes
and Slurm (or Torque) is based upon a gRPC proxy, named red-box, which
takes place on the worker node that operates the Slurm (or Torque) login bina-
ries. Furthermore, on that Kubernetes worker the user to submit jobs will have
to be created on the HPC site and have the rights to submit and monitor jobs.

In order to bridge the communication between Torque and Kubernetes. Torque-
Operator extends the wlm-operator with Torque support [3]. Both operators
share similar mechanisms, nevertheless, their implementation varies significantly
as Torque and Slurm have different structures and parameters. The Torque job
script is encapsulated into a Kubernetes yaml job script. The yaml script is
submitted from a Kubernetes login. The Torque script part is processed by the
Toque-Operator. A dummy pod is generated to transfer the Torque job speci-
fication to a scheduling queue e.g. waiting queue, test queue (scheduling queue
is a terminology of job scheduler). Torque-Operator invokes the Torque binary
qsub which submits Torque job to the Torque cluster. When the Torque job com-
pletes, Torque-operator creates a Kubernetes pod which redirects the results to
the directory that the user specifies in the yaml file.

By default, with the current version of wlm-operator, all submitted Slurm
jobs will be executed on behalf of one user. This is very limiting in our context
because we need multi-user support in order to enable individual monitoring, ac-
counting, fairshare scheduling and other features per single user or group of users.
For this, we provide a dynamic adaptation of the user context by automatically
reconfiguring the virtual-kubelet and agent which is used as a pass-through for
the Slurm or Torque job, along with the necessary red-box socket, on the node
having the Slurm/Torque login capabilities, using the right user privileges. This
gives us the ability to enable each user to use Kubernetes with her account and
submit Big Data Analytics on the Slurm or Torque cluster through her account
as well, hence removing the initially existing isolation and security barriers of
wlm-operator. The mechanisms presented in this paper will be provided as open-
source once they are considered more mature.

4 Environment deployment

In our hybrid Big Data-HPC context, the Environment Deployment tool is re-
sponsible for setting up the environment for the task execution and deployment.
Based on our needs we sought for the following features:

1. the ability to define the environment for any application, without need for
access to the underlying system, i.e. the ability to decouple development and
deployment,

2. portability across different systems, including HPC and Big Data resource
partitions and

3. the ability to transparently use all available system resources, i.e. accelera-
tors, high-performance interconnects, storage.
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We based our solution on Singularity containerization and pre-built images for
specific AI and Big Data frameworks and HPC resources. For this we offer a
repository of singularity images with Pytorch, Tensorflow, Keras, Horovod op-
timized for specific versions of GPUs, Infiniband and their adapted libraries
CUDA, verbs, etc. Different combinations of the above results in a number of
pre-defined images that can be used as the base to deploy a specific Big Data
Analytics application.

4.1 Singularity Container creation and deployment

A Singularity container image is a single, immutable (read-only), SIF (Singu-
larity Image Format) file. The environment is stored within the image and can
include everything from the application code/executable to runtimes to system
libraries. Using Singularity, a user can build an image from either a Singularity
definition file or by downloading an existing image from a container library, or
from Docker hub. In the latter case, the build process transforms the Docker im-
age to a Singularity image. We highlight the following issues and our solutions,
related to container creation in the context of its usage in hybrid Big Data -
HPC platform:

1. A Singularity image may or may not contain the application itself. In the
repository we prepare the images to be generic and we give the ability to
the users to either built their application within a new image or just use the
base image and deploy their application externally.

2. Although Singularity does not require elevated privileges to deploy an image,
it still requires elevated privileges to build an image. Therefore, Singularity
image files cannot be built directly on HPC systems, where user access rights
are limited. We build all container images on external desktops/servers. The
produced image can then be uploaded to the system where it will be de-
ployed, or a shared repository from where it can be used directly by users.

3. To make transparent usage of the network and/or the GPUs, since containers
do not virtualize the system, Singularity relies on the host environment as
well. For example, for the case of MPI, Singularity partly uses the host
runtime to manage MPI processes. Similarly, for the case of GPUs, it uses
the host device drivers and related user-space driver libraries. This can cause
compatibility issues, if the runtime encapsulated within the container image
is not compatible with the runtime on the host. Therefore, even though
we externally build Singularity images, we do take into account the related
software versions of the underlying HPC systems, to ensure compatibility.

Once a Singularity image is created, either uploaded to the target system or
pulled onto the target system from the component library, it can be deployed
to execute the corresponding application task. To guarantee an optimal and
simplified deployment of singularity images the following parameters need to be
configured correctly for the deployment process. These are the bindmounts, the
environment variables and the possibility to use instances. Since these are very
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closely related to the specific application to be deployed we do not provide any
generic solution. Nevertheless some batch scripts examples featuring the usage
of singularity deployments and best practices can still be helpful. The pre-built
Big Data images along with their definition files will be provided as open-source
once they have been sufficiently tested.

5 Multi-GPU scaling of sample precision agriculture
application

In order to validate the orchestration and environment deployment layers of our
hybrid Big Data/HPC solution we have performed some experiments using one
real-life precision agriculture application. The aim of the application is to develop
a framework for automatic identification and counting of wheat ears in fields
by getting data from sensors on ground that will enable crop yield prediction
at early stages and provide more informed decisions for sales planning. The
application consists in training a deep learning algorithm written in Python and
using Fastai/Pytorch framework based on a group of RGB images (initially 138
images). In particular we deployed the wheat ears counting application upon one
single HPC node testing the scaling and parallelization of the code by increasing
the number of GPUs.

The experiments have been performed on a dedicated testbed where the
previously described architecture of Kubernetes orchestration on both Big Data
and HPC partitions has been deployed, along with the integration to Slurm and
Singularity for the execution on the HPC partition. The HPC testbed is part of
BULL NOVA cluster and we made use of the following hardware:

– one HPC BareMetal node, featuring a Bull Sequana S800 machine, equipped
with 4X2 Intel Xeon Platinum 8253 (256CPUs), 4 TB RAM and 4 GPUs
NVIDIA GV100GL Tesla V100 PCIe 16GB,

– one Big Data VirtualMachine node, with 4 CPUs and 8GB RAM

The execution took advantage of the singularity pre-built image for fastai/pytorch
and was triggered through the orchestration layer of Kubernetes abstraction us-
ing Kubectl command line utility. In the case of BareMetal node the execution
is finally submitted by Slurm, whereas in the case of VM it is submitted directly
by Kubernetes as batch job. The experiment was repeated 5 times for each case
and the median value is shown in table 1.

The usage of BareMetal node may be misleading because the execution is
not done literally as bare metal. Both cases use containerization with singularity
for the executions with the difference that in the second case it is done on VM
while in the first on bare-metal. The results in table 1 show the performance
improvement of our application when using a powerful HPC BareMetal node
with GPU instead of small VM, 100* orders of magnitude. Besides that it shows
how the scaling of GPUs impacts the application performance: 10* orders of
magnitude when using GPUs rather than only CPU. Our goal is to enable further
performance optimizations by providing a distributed version selecting between
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VirtualMachine(VM) or BareMetal(BM) VM BM BM BM BM BM
number of CPUs 4 256 256 256 256 256
number of GPUs 0 0 1 2 3 4

Execution Time (sec) 37008 7020 417 312 274 247

Table 1. Execution time of wheat-ears application on 1 VirtualMachine (4 CPUs)
node or one BareMetal (256 CPUs) node scaling from 0 to 4 GPUs

pytorch.distributed or horovod. Furthermore and most importantly, these simple
executions enabled us to validate the usability of our integrations combining
Kubernetes, Slurm and Singularity in a hybrid Big Data/HPC environment for
execution of Deep Learning training models.

6 Conclusions

This paper presents a prototype architecture to enable the execution of Big Data
Analytics upon supercomputers using different Big Data and HPC hardware
partitions and a converged Big Data-HPC-Cloud software stack. We proposed
mechanisms that make use of Kubernetes as high-level orchestrator and com-
mon API to allow the deployment of Data Analytics as HPC jobs, through an
integration with Slurm based on an a multi-user version of wlm-operator and
Singularity containerization. Furthermore we proposed an environment deploy-
ment tool bringing pre-built images of Big Data and AI frameworks (Pytorch,
Tensorflow, etc) specifically adapted to targeted HPC resources (GPUS, Infini-
band, etc) which can be used as base to further built environments to be used
for different types of Data Analytics on HPC.

These mechanisms are aimed to be used as the basic building blocks to pro-
vide supercomputers abstraction targeting data-scientists with no-HPC exper-
tise. For this we aim to deploy Cloud-level software such as the Spring Cloud
Dataflow workflow manager18 and the LeanXscale database19. These tools can
be used to create hybrid Big Data-HPC workflows, with the necessary data man-
agement, to be deployed transparently, for a data-scientist, through the common
Kubernetes API and the aforementioned techniques to the underlying supercom-
puter. Further optimizations will be researched for the multi-user support of the
Kubernetes integration with Slurm and for this we will explore the possibility
to use the newly introduced Slurm REST-API20 which will allow a more di-
rect communication with Cloud services. The support of specialized Big Data
frameworks such as Spark and Flink need the usage of a resource manager. This
role can be played by Kubernetes [10] and this is another direction that we are
exploring. In this context we are studying ways to allow the collocation of Big

18 https://spring.io/projects/spring-cloud-dataflow
19 https://www.leanxcale.com/
20 https://slurm.schedmd.com/rest.html
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Data and HPC jobs by making use of Kubernetes to deploy Spark applications
on Slurm clusters through a non-interfering method of low-priority jobs[9].

7 Acknowledgments

This project has received funding from the European Union’s Horizon 2020 re-
search and innovation program under grant agreement NO.825355.

References

1. ETP4HPC, “Strategic research agenda (SRA4) for
HPC in Europe,” March 2020. [Online].Available:
https://www.etp4hpc.eu/pujades/files/ETP4HPC SRA4 2020 web(1).pdf

2. Konstantinos Perakis, Fenareti Lampathaki, Konstantinos Nikas, Yiannis Georgiou,
Oskar Marko, Jarissa Maselyne, CYBELE – Fostering precision agriculture & live-
stock farming through secure access to large-scale HPC enabled virtual industrial
experimentation environments fostering scalable big data analytics, Computer Net-
works, Volume 168, 2020, 107035, ISSN 1389-1286

3. Naweiluo Zhou, Yiannis Georgiou, Li Zhong, Huan Zhou and Marcin Pospieszny.
Container Orchestration on HPC Systems. To appear in IEEE CLOUD 2020

4. E. Casalicchio, Container Orchestration: A Survey, pp.221 235.Cham: Springer In-
ternational Publishing, 2019

5. K. Hightower, B. Burns, and J. Beda, Kubernetes: Up and Running Dive into the
Future of Infrastructure, OReilly Media,1sted., 2017

6. M. G. Xavier, M. V. Neves, F. D. Rossi, T. C Ferreto, T. Lange, and C. A. F.
De Rose, Performance Evaluation of Container-Based Virtualization for High Per-
formance Computing Environments, 21st Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing, pp. 233–240, 2013

7. M. Plauth, L. Feinbube, and A. Polze, “A Performance Survey of Lightweight Vir-
tualization Techniques,” in Service-Oriented and Cloud Computing F. De Paoli,
S. Schulte, and E. Broch Johnsen, pp. 34–48, Springer International Publishing,
2017

8. J. Zhang, X. Lu, and D. K. Panda, “Is Singularity-Based Container Technology
Ready for Running MPI Applications on HPC Clouds?, in Proceedings of The10th
International Conference on Utility and Cloud Computing, Association for Com-
puting Machinery, 2017

9. Michael Mercier, David Glesser, Yiannis Georgiou, Olivier Richard: Big data and
HPC collocation: Using HPC idle resources for Big Data analytics. BigData 2017:
347-352

10. Spark - Kubernetes integration: https://spark.apache.org/docs/latest/running-on-
kubernetes.html

11. C. Boettiger, ”An introduction to Docker for reproducible research,” in ACM
SIGOPS Operating Systems Review, 2015.

12. Andy B. Yoo, Morris A. Jette, Mark Grondona: SLURM: Simple Linux Utility for
Resource Management. JSSPP 2003: 44-60

13. David Godlove: Singularity: Simple, secure containers for compute-driven work-
loads. PEARC 2019: 24:1-24:4

14. Giuseppa Muscianisi, Giuseppe Fiameni, Abdulrahman Azab: Singularity GPU
Containers Execution on HPC Cluster. ISC Workshops 2019: 61-68

View publication stats

https://www.researchgate.net/publication/346283064

