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ABSTRACT
In the high performance computing (HPC) domain, perfor-
mance variability is a major scalability issue for parallel com-
puting applications with heavy synchronization and communi-
cation. In this paper, we present an experimental performance
analysis of OpenMP benchmarks regarding the variation of
execution time, and determine the potential factors causing
performance variability. Our work offers some understand-
ing of performance distributions and directions for future
work on how to mitigate variability for OpenMP-based appli-
cations. Two representative OpenMP benchmarks from the
EPCC OpenMP micro-benchmark suite and BabelStream are
run across two x86 multicore platforms featuring up to 256
threads. From the obtained results, we characterize and explain
the execution time variability as a function of thread-pinning,
simultaneous multithreading (SMT) and core frequency vari-
ation.

KEYWORDS
performance variability, OpenMP, parallel computing, thread-
pinning, simultaneous multithreading

1 INTRODUCTION
Parallel applications executing on shared-memory systems in
the HPC world usually follow the single-program multiple-
data (SPMD) model, typically implemented with OpenMP.
OpenMP, the de facto programming model for SPMD, spawns
multiple threadswhen encountering a #pragma omp parallel
clause. Each thread is then executed on one core/hardware
thread of the system to execute the parallel region, and com-
monly all threads synchronize at the end of the execution of
the parallel region to compute the final result. Some system-
specific activities, such as operating system (OS) daemons and
interrupt processing, can cause preemption or interrupt han-
dling to one or multiple of the threads, causing the execution
of the parallel work to be delayed and the execution time to be
dominantly determined by the slowest thread, while the oth-
ers wait for synchronization, leading to a waste of resources
like time and energy. Also, due to the randomness of the de-
lay, it will in turn generate performance variability for the
runtime of the parallel application. Performance variability
has become an important limiter to the scalability in parallel
computing [13]. With the complexity of modern hardware
architecture features increasing, variability has become an
increasingly challenging issue for improving the efficiency of
parallel computing [19].

Performance variability or run-to-run variations of applica-
tions owing to multiple components in the system can become
an obstacle for the development of parallel applications in
several ways, like performance debugging or quantifying the
effects of system software and compilers changes [2]. There
have been various efforts to identify the potential causes of
variability and in turn find solutions to reduce the possibility
of variability occurrence, aiming at obtaining performance
stability of parallel application executions. Most studies on
variability have focused on MPI [9, 11, 16, 23], as the explicit
and synchronizing nature of message passing communication,
and the large scale of applications using this programming
model, make MPI applications more sensitive to noise, which
in turn leads to load imbalance and ultimately performance
degradation. Evaluating the impact of noise and the occurring
performance variability in shared memory models such as
OpenMP has received comparatively less attention. However,
as the core count of modern CPUs increases, shared mem-
ory parallel applications using OpenMP are likely to be also
impacted by OS noise.

Several strategies to optimize the performance of parallel
programs with OpenMP have been proposed, studied, and
have influenced the state-of-practice in execution. A common
strategy is thread pinning [30], which can improve applica-
tion performance by keeping threads bound to a specific core
and avoiding expensive memory accesses. The authors in [21]
have studied several thread-pinning strategies to improve the
performance of OpenMP programs, while in a later work [22],
they have proposed dynamic thread-pinning for phase-based
OpenMP programs with multiple parallel regions. Their study
is limited to a small scale of core/thread counts. However, they
identified thread pinning as a critical factor to performance
variability [20]. The effective usage of simultaneous multi-
threading, the architectural mechanism that supports several
hardware threads per physical core, has also been shown to
improve the performance of MPI and MPI+OpenMP applica-
tions [16]. Finally, tuning the core frequencies for performance
is also important, and well-studied in the literature relevant to
developing dynamic energy-efficiency techniques [4, 17, 18],
as even in steady-state, frequency variation can cause high
variability of the performance [25].

This work focuses on characterizing the performance vari-
ability of OpenMP on modern CPUs. Motivated by the scale
of recent, modern multi-core systems, we conduct an exten-
sive study of the impact of common performance-optimizing
strategies on the performance of OpenMP applications, in an
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effort to further understand and pinpoint sources of perfor-
mance variability in OpenMP. We use two micro-benchmarks
from the EPCC benchmark suite [14] which focus on the per-
formance of common OpenMP constructs, such as parallel
for and synchronization, and the BabelStream benchmark [7],
which assesses the memory bandwidth, and execute them
on two different systems, using different variability-reducing
strategies. In particular, we analyze thread-pinning, which
can help in revealing the performance degradation related
to unbound threads in parallel applications. We additionally
explore simultaneous multithreading to show how it can affect
the performance of OpenMP benchmark executions. Finally,
during benchmark execution, we record the frequencies of all
cores, to examine whether frequency variation exists, and how
it can affect the variability of execution time.

Our study is conducted on two production clusters hosted
by two different academic institutions. We do not have priv-
ileged access to these systems and therefore cannot control
the node setup or operating system knobs and we cannot
trace kernel-level events. We, therefore, rely on a statistical
analysis of the observed execution times, repeatedly running
every benchmark with multiple iterations of the kernels of
interest. By studying the possible sources and characterizing
the performance variability, we can categorize the sources of
performance variability and find efficient solutions to mitigate
a particular class of variability in future work.

The rest of the paper is organized as follows. We introduce
related work in Section 2. Section 3 provides an overview of
the proposed methodology to characterize the performance
variability. We present our experimental setup in Section 4
and experimental results in Section 5. A conclusion of this
work follows in Section 6.

2 RELATEDWORK
Performance variability of parallel applications has been well
reported on modern systems in multiple works. At the extra-
application level, there can be multiple reasons for unpre-
dictable performance, with operating system noise (also re-
ferred to as OS jitter) being one of the most common reasons.
Several works [6, 9, 23, 28] study the impact of operating sys-
tem activities on performance, looking primarily at large-scale
parallel applications with MPI. A recent work [27] demon-
strates that OS noise on non-uniform memory access (NUMA)
architectures can cause high run-to-run performance variabil-
ity. As the number of cores/processors on modern systems
grows, OS noise can become a more significant factor of per-
formance variability, as a small amount of perturbation can be
greatly amplified in parallel computing. It is therefore impor-
tant to study the impact of OS noise on performance variability
and find solutions to mitigate it.

Aside from the operating system, performance variability
can arise from contention and interference on shared resources.
Bhatele et al. [2] show that sharing network resources on HPC
systems is a primary source of performance variability. Xu et
al. [31] show that interference on the I/O subsystem affects
the performance of parallel applications. On systems with
simultaneous multithreading, performance degradation can

occur from oversubscription of the physical cores [16]. An-
other source of variability is manufacturing variability [11],
which leads to performance heterogeneity. The power varia-
tion frommanufacturing variability can affect the performance
stability of HPC applications, as it translates to CPU frequency
variation [26].

As there is increasing evidence for performance variability
of parallel applications, several techniques and tools have been
proposed to measure and characterize performance variabil-
ity in recent works. In particular, for OS noise, Pradipta et
al. [5] develop a tool to monitor and evaluate the impact of
OS noise on Linux-based systems through fine-grained kernel
instrumentation. Gioiosa et al. [10] extend Oprofile, a Linux
kernel-level tool to characterize the sources of OS noise.Morari
et al. [23] extend the Linux tool LTTng to build LTTng-Noise,
a tracing tool. De Oliveira et al. [6] develop the osnoise tracer,
which analyzes noise activities via kernel instrumentation. A
more generic technique to measure performance variability
and statistically characterize performance distributions has
been proposed by Kocoloski et al. [13], to assist in system
parameter design such as power-capping.

A limited number of works have focused on analyzing the
performance variability of OpenMP programs. Camacho et
al. [1] show that thread binding can reduce execution time
variation in OpenMP applications, and Mazouz et al. [20]
study the effects of thread binding, OS jitter, and hardware-
related sources (memory-access related sources, concurrent
jobs, asymmetry between cores, dynamic voltage scaling and
device temperature) on execution time variation in OpenMP.In
our work, we also focus on analyzing and characterizing per-
formance variability in OpenMP.We exclude interference from
other applications and run our benchmarks in isolation. Addi-
tionally, as we do not have privileged access to the platforms
in study, we exclude operating system knobs from our tech-
niques and only observe the impact of operating system noise
on OpenMP, with a statistical analysis of results.

3 METHODOLOGY
In this section, we describe the methodology followed to char-
acterize performance variability in OpenMP. We note that we
always execute benchmarks in isolation on a single node, elimi-
nating the case of variability from application interference. We
perform our experiments on production, site-managed clus-
ters, therefore we do not have privileged access that would
allow us to tune the execution environment. Instead of detailed
trace analysis, we rely on multiple experiments and statisti-
cal analysis of the results. The following paragraphs describe
the strategies we apply to detect the sources and impact of
performance variability.

Thread pinning: By default, we let the operating system
decide the thread placement on cores, as the default setup
for OMP_PROC_BIND is set to false. In this case (before thread-
pinning), the threads may migrate between cores during the
execution of parallel programs to improve work balance. In
modern multi-core architectures, exploitation of locality is es-
sential to efficiently run parallel programs [12]. OpenMP sup-
ports users with fine-grained thread affinity control through
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thread pinning. A group of places, corresponding to a group of
hardware threads, can be defined and OpenMP threads can be
bound to specific places (therefore hardware threads) by set-
ting a pinning policy. To achieve this, some OpenMP-related
environment variables are used to specify the OpenMP set-
tings in this paper, i.e., OMP_NUM_THREADS is used to define the
number of threads, OMP_PLACES and OMP_PROC_BIND work to-
gether to pin each thread to a specific core. The thread affinity
policy is set as close, which implies that worker threads are
close to the main thread in contiguous partitions [24, 30].

Using Simultaneous Multithreading: Simultaneous mul-
tithreading mechanism is implemented on one of the two plat-
forms included in our experimental setup, Dardel (see Section 4
for details), where each core has two hardware threads (also
referred to as logical cores). We evaluate two configurations
in our experiments. The first one is single-threaded, denoted
as ST, in which at most one hardware thread per physical
core is used to run the benchmark. In this case, the additional
hardware thread of the core is reserved for operating system
activities to absorb noise and isolate the benchmark running
from the system interference. In the second configuration, both
hardware threads of the core are utilized to run our bench-
marks. We refer to this configuration as MT. We collect the
results under the above two configurations and compare the
performance variability of the execution of the benchmarks.

Frequency logging on a separate core: During the ex-
ecution of benchmarks, a background Python script is run
on a separate core to collect the frequencies of all cores. By
doing this, we try to avoid interference from the frequency
logger and benchmark running on the same core and guaran-
tee that the execution of benchmarks is influenced as little as
possible by other background activities. In the next section,
we showcase the performance variability that can be related
to the frequency variations.

4 EXPERIMENTAL SETUP
4.1 Hardware platforms
We use two different hardware platforms for our experiments.
The first platform, Dardel, is an HPE Cray EX supercomputer
located at the PDCCenter for High-Performance Computing in
Sweden. Each node of Dardel integrates two AMD EPYC Zen2
2.25GHz 64-core processors, accommodating two hardware
threads per core. From the operating system’s view, there are
a total of 128 cores and 256 hardware threads/logical cores.
The cores are organized in 8 NUMA domains of 16 cores each,
with each socket behaving as a quad-NUMA domain. The
maximum frequency of each core is 3.4GHz. The system runs
the SUSE Linux Enterprise Server 15 SP3 OS, with Linux kernel
version 5.3.18-150300.59.76_11.0.53-cray_shasta_c. We use gcc
v7.5.0 as the compiler.

The second platform, Vera, is a cluster located at C3SE Cen-
ter for Scientific and Technical Computing at Chalmers Uni-
versity of Technology in Sweden. Each node of Vera integrates
two Intel Xeon Gold 6130 2.1GHz 16-core processors, with a
total of 32 cores. Each socket corresponds to a NUMA domain,
with a total of 2 NUMA domains on the node. The maximum
frequency of each core is 3.7GHz. The system runs Rocky

Table 1: Parameters of the EPCC OpenMP micro-
benchmarks

EPCC micro-benchmark schedbench syncbench
outer repetitions 100 100
delay time(µs) 15 0.1
test time(µs) 1000 1000
itersperthr 8192 -

Linux release 8.7, with Linux kernel version 4.18.0. We use
gcc v8.5.0 as the compiler.

4.2 OpenMP benchmarks
We use three different OpenMP benchmarks for our evalu-
ation of performance variability in OpenMP. We draw two
benchmarks from the EPCC OpenMP micro-benchmark suite
[15, 29], one of the most comprehensive suites for OpenMP
constructs, which provides measurements of the overhead
incurred from an OpenMP construct by comparing the execu-
tion time of parallel code against this of serial code. We use
schedbench, the benchmark focusing on the parallel for con-
struct with different schedules, and syncbench, the benchmark
which evaluates all the different available synchronization
methods in OpenMP. The benchmarks can be run with differ-
ent parameters. We present the parameters used for the two
benchmarks in our evaluation in Table 1. The third benchmark
is BabelStream [8], a common benchmark to measure memory
bandwidth by executing simple vector kernels, including copy,
add, multiplication, triad, and dot product. It has been used
in previous work [11] to evaluate performance variability in
a power-limited environment. We use the default parameters
and an array size of 225 for BabelStream in our evaluation.

We have executed a large set of experiments with the three
benchmarks on the two hardware platforms described above.
For every runtime configuration, we run each experiment
10 times, to collect run-to-run performance variability, in ad-
dition to any variability reported by the EPCC benchmarks
themselves, which also execute 100 repetitions of each micro-
benchmark. Due to page limitations, we only highlight those
experimental results that show statistically significant perfor-
mance variability and can shed light on the potential sources of
this variability. In particular, we execute schedbenchwith three
different schedules, namely static, dynamic and guided and
various different chunk sizes [3], and present the results for
specific schedules with the chunk size equal to 1. e.g., static
or dynamic schedule with chunk size equal to 1, labelled as
static_1 and dynamic_1 respectively. From syncbench, we
select the reduction clause as the most representative of syn-
chronization methods in OpenMP. For BabelStream, in every
single run, we collect the minimum, average, and maximum
execution time for each kernel and then normalize the min-
imum and maximum execution time to the average execution
time. The run-to-run variations of execution time are depicted
by comparing the normalized minimum and maximum exe-
cution times among 10 runs for every vector operation kernel
respectively.
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Table 2: Higher execution time (µs) for schedbench
(dynamic_1).

run # Dardel Vera
4 threads 254 threads 4 threads 30 threads

1 124020.18 154277.48 136485.84 164672.22
2 124062.15 154162.74 136562.99 164642.42
3 123989.57 154159.44 136621.25 164662.94
4 123949.12 153999.99 136509.92 164665.88
5 124016.11 154206.72 136386.38 164652.30
6 123917.89 154044.95 136479.29 164573.27
7 123885.41 154222.61 136513.89 164699.42
8 123902.87 154182.23 136448.17 164754.22
9 123935.31 168835.06 136645.71 164717.21
10 124023.24 154065.79 136743.01 164757.37

5 EXPERIMENTAL RESULTS
5.1 OpenMP scalability
We begin our evaluation by examining the scalability of the
three OpenMP benchmarks, to understand the trend of the
average (Avg.) execution time in Table 2 and Figures 1 and 2,
and examine whether higher thread counts have higher per-
formance variability in Figure 3. In Figure 3, the minimum and
maximum execution times are normalized to the average exe-
cution time for each run respectively, and run each benchmark
10 times. We employ thread pinning for all the experiments,
and make use of SMT, where available.

(a) 4-254 threads on Dardel

(b) 2-30 threads on Vera

Figure 1: Execution time (µs) when increasing the num-
ber of HW threads in syncbench on Dardel and Vera.

Regarding the scalability of execution time, we observe that
the execution time increases as we spawn additional OpenMP

(a) 2-254 threads on Dardel

(b) 2-30 threads on Vera

Figure 2: Execution time (ms) for BabelStream when in-
creasing the number of HW threads on Dardel and Vera.

threads, for schedbench in Table 2 and for syncbench in Fig-
ure 1, showing the average execution time for all 10 runs. For
syncbench, we additionally observe a sharp increase in the exe-
cution time when we start utilizing the second socket on both
systems (30 threads with 2 NUMA domains for Vera, and on
128 threads with 2 quad-NUMA domains for Dardel), as well
as when we utilize the logical cores, in addition to the physical
cores, on Dardel (254 threads). Also, we additionally highlight
that the micro-benchmark corresponding to the reduction
clause is the most time-consuming among the synchroniza-
tion micro-benchmarks. We finally showcase the scalability
of BabelStream in Figure 2, observing that the execution time
of BabelStream reduces when launching more parallel threads,
as expected, on both Dardel and Vera.

Regarding the scalability of performance variability, higher
thread counts add to performance variability for syncbench
and BabelStream in Figure 3, especially when the thread count
is high (≥ 128 HW threads/OpenMP threads on Dardel and
≥ 30 on Vera), while it is not as pronounced for schedbench,
as seen in the first column of Figure 3. It is worth pointing out
that when all cores/HW threads were used for this scalability
experiment, we observed a significantly worse performance
behavior. To avoid this, on both systems, we spare 2 cores/HW
threads, using 30 out of the 32 cores on Vera and 254 out of
the 256 hardware threads on Dardel. We highlight that we
observe both higher run-to-run variability, and also high vari-
ability between the 100 repetitions of the micro-benchmark
for schedbench and syncbench. We argue that this is due to
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operating system activities, which interfere with the bench-
mark execution when no spare cores/resources are left for
them, causing more noise from the view of the user’s applica-
tion execution. This observation is in accordance with recent
works [6, 9], which argue for resource isolation required for
system activities, in order to reduce the OS noise.

5.2 The effect of thread pinning
In this part, we evaluate the effect of thread pinning on re-
ducing performance variability. We showcase our results from
Dardel in Figure 4, which is in accordance with our evaluation
on Vera, although due to the larger scale of Dardel nodes, per-
formance variability is more pronounced on this platform. The
first column of Figure 4 shows average (Avg.) execution times
of schedbench for 10 runs. The run-to-run variations of the av-
erage execution time do not completely disappear but can be re-
duced after the threads are pinned in Figure 4d, where only run
# 9 has a higher execution time, compared to Figure 4a, where
runs #(2,8,9,10) take longer time to finish. We believe that
thread-pinning plays an important role in removing run-to-
run variability and improving performance stability. The bene-
fits of thread pinning are much more pronounced in the case of
syncbench, as synchronization primitives are more susceptible
to noise and even slight increases in the execution time of
one thread can propagate throughout the operation. Figure 4b
shows a high run-to-run variability for the reduction micro-
benchmark of syncbench, on 128 physical cores of Dardel, re-
sulting in more than 3 orders of magnitude of differences in the
execution time of the micro-benchmark. Contrarily, after pin-
ning, we achieve a much higher performance stability for the
micro-benchmark, as shown in Figure 4e. We note that the y-
axes of the two subfigures have different scales. The run-to-run
variability is almost eliminated after pinning, while the execu-
tion time variations between the 100 repetitions of the bench-
mark are also largely reduced for certain runs, e.g. runs #(2, 3).
Our observations for BabelStream are similar. Figure 4c shows
high run-to-run variability for all the five kernels of the bench-
mark before thread pinning, as there is a difference of up to 6×
between theminimum andmaximum execution times between
10 different runs. After pinning, in Figure 4f, we observe less
run-to-run variability, especially for the copy and mul kernels.

As load balancing at the OS-level can be affected by thread-
pinning, it is promising to jointly consider pinning policy
and application characteristics. In a nutshell, thread pinning
is particularly beneficial for reducing run-to-run variability
and improving performance stability of OpenMP applications,
especially for memory-bound applications, as evidenced by
BabelStream and synchronization-sensitive applications, as
evidenced by syncbench. In the remainder of our evaluation,
we use thread pinning for all our experiments.

5.3 The effect of SMT
We examine the effect of simultaneous multithreading on
Dardel, as Vera does not support SMT. We compare the per-
formance variability of our benchmarks in Figure 5, for the
ST case, where we use only physical cores of Dardel, e.g..
32/64/128 cores and OpenMP threads, and theMT case, where

we use both two hardware threads of 16/32/64 physical cores
of Dardel, i.e. 32/64/128 HW threads and OpenMP threads.
We note that the use of SMT is usually decided by the devel-
oper/user, based on application properties, e.g. the compute-
boundedness ormemory-boundedness of the application. How-
ever, in our evaluation, we regard SMT only as a potential
source of performance variability, examining cases where we
use the same number of threads.

For schedbench in Figure 5a and Figure 5d, even though
some run-to-run variability exists under the ST configuration,
we observe a very high variability among the 100 outer repe-
titions of the benchmark, for each single run under the MT
configuration. Regarding syncbench, we compare the run-to-
run variations of execution times and adopt the coefficient of
variation (CV), i.e. the ratio of the standard deviation to the av-
erage (lower is better), for every run, as the metric to measure
the performance variability of execution time in Figure 5b and
Figure 5e. The performance stability is significantly affected
in a negative way when leveraging SMT especially for some
synchronization directives such as for,single,ordered and
reduction, as the CV values of all 10 runs show high variances
in Figure 5e. For most synchronization cases, the ST config-
uration exhibits better performance stability in Figure 5b, by
leaving the second hardware thread free, potentially available
for OS activities, whereas higher performance variability, in-
cluding run-to-run variations and the variations among the
100 outer repetitions for each single run can be seen with the
MT configuration. Similarly, we compare the performance
variability of the normalized minimum and maximum times
for all 10 runs for BabelStream in Figure 5c and Figure 5f under
the ST and MT configurations respectively. BabelStream also
does not benefit from using hardware threads.

The above observations reveal that leaving the second thread
in SMT implementation for system activities results in better
performance stability, while the MT configuration makes the
executing benchmark experience more SMT interference. This
impact of additional hardware thread resources reserved for
operating system, i.e. ST configuration, varies with benchmark
characteristics and scale. For example, ST does not outperform
MT much for BabelStream when only a few threads are used.
Overall, leaving the additional thread resources implemented
by SMT mechanism for OS activities can be a promising way
to achieve performance stability for the OpenMP runtime.

5.4 The effect of frequency variation
We finally examine the effect of frequency variation on the
performance variability of OpenMP, by continuously logging
the frequency levels of all cores (read through the sysfs inter-
face of the Linux CPUFreq), through a Python script executing
on a separate core. Although the default governor on Vera is
set to performance, boosting all the core frequencies to the
maximum, for some of our experiments, we have observed per-
formance variability, especially across NUMA nodes, which
can be justified by frequency variations. For some of the ex-
periments done on Vera when using same cores but from same
NUMA node or cross NUMA nodes, we observed the different
behaviours of performance variability that can be potentially
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(a) schedbench on Dardel (b) syncbench on Dardel (c) BabelStream on Dardel

(d) schedbench on Vera (e) syncbench on Vera (f) BabelStream on Vera

Figure 3: Scalability of performance variability of normalized execution time in schedbench, syncbench, andBabelStream
when increasing the number of used HW threads on Dardel and Vera.

(a) schedbench before thread-pinning (b) syncbench before thread-pinning (c) BabelStream before thread-pinning

(d) schedbench after thread-pinning (e) syncbench after thread-pinning (f) BabelStream after thread-pinning

Figure 4: Lower variability of execution time(µs) after thread-pinning in schedbench (first column) when using 16
threads, and in syncbench (second column) and in BabelStream (third column) when using 128 threads on Dardel.

explained by the variation of frequency. Figure 6 depicts the
relation between variability of execution time for schedbench
and frequency variation. Figure 6c, where we use cores across
NUMA nodes, shows higher performance variability, both be-
tween different runs, and among the 100 outer repetitions, com-
pared to Figure 6a, wherewe use the same number of cores on a

single NUMAnode. Figure 6b and Figure 6d depict the behavior
of frequency for these two groups of experiments respectively.
The brown region in Figure 6d during all 10 runs indicates
more frequent frequency variation, compared to Figure 6b. As
higher frequency levels used to run the benchmark, dictated by
the performance governor, positively influence the execution
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(a) schedbench with ST (b) syncbench with ST (c) BabelStream with ST

(d) schedbench with MT (e) syncbench with MT (f) BabelStream with MT

Figure 5: Higher variability of execution time (µs) in schedbench ( first column, executed with 128 threads) and
syncbench (second column, executed with 32 threads) and BabelStream (third column, executed with 128 threads) due
to SMT implementation on Dardel.

time, this explains the above observation that the execution
times vary more, depending on the frequency variation.

We made a similar observation for syncbench in Figure 7,
where Figure 7c exhibits more variations for both run-to-run
executions and outer repetitions for a single run compared
to Figure 7a. The same effect of frequency variation can be
seen in the grey region in Figure 7d. We note that on Dardel,
we have not observed an obvious trend between performance
variability and frequency variations, as Dardel exhibits less
frequency variation compared to Vera.

6 CONCLUSION
This paper aims to characterize the performance variability of
OpenMP benchmarks and analyze the potential sources and
impact of the performance variability based on an experimen-
tal study. We have tested two OpenMP benchmarks from the
EPCC OpenMP micro-benchmark suite and BabelStream, on
two platforms, assessing the impact of thread pinning, SMT,
and core frequency variation on performance variability. Our
experimental results have illustrated that performance variabil-
ity exists in OpenMP, both within a benchmark and between
different runs, and can be reduced considerably by applying
thread-pinning, leaving the additional hardware threads im-
plemented by SMT for OS activities, but can be negatively
affected by frequency variation during execution, which is
beyond the control of the user.

For future work, we aim to extend our characterization
to other benchmarks such as FP-intensive or cache-intensive
benchmarks and larger OpenMP applications on other plat-
forms. We also wish to pinpoint the exact sources of OS noise

and their impact on OpenMP applications, in order to design
strategies to mitigate or eliminate performance variability.
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