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Abstract—General Matrix Multiplication (GEMM) is one of
the most common kernels in high-performance computing (HPC)
and machine-learning (ML) applications, frequently dominating
their execution time, rendering its performance vital. As multi-
GPU nodes have become common in modern HPC systems,
GEMM is usually offloaded on GPUs as its compute-intensive
nature is a good match for their architecture. On the other
hand, despite the GEMM Kkernel itself being usually compute-
bound, execution on multi-GPU systems also requires fine-
grained communication and task scheduling to achieve optimal
performance. While numerous multi-GPU level-3 BLAS libraries
have faced these issues in the past, they are bound by older
design concepts that are not necessarily applicable to modern
multi-GPU clusters, resulting in considerable deviation from peak
performance. In this work, we thoroughly analyze the current
challenges regarding data movement, caching, and overlap of
multi-GPU GEMM, and the shortcomings of previous solutions,
and provide a fresh approach to multi-GPU GEMM optimization.
We devise a static scheduler for GEMM, enabling a variety of
algorithmic, communication, and auto-tuning optimizations, and
integrate those in an end-to-end open-source multi-GPU GEMM
library. Our library is evaluated on a multi-GPU NVIDIA HGX
system with 8§ NVIDIA A100 GPUs, achieving on average a 1.37x
and 1.29x performance improvement over the state-of-the-art
multi-GPU GEMM libraries, for double and single precision,
respectively.

I. INTRODUCTION

General Matrix Multiplication (GEMM) is a fundamental
operation in high-performance computing (HPC) and machine
learning (ML) applications, rendering its performance vital for
their optimization. The inherent parallelism and high opera-
tional intensity of GEMM make it well-suited for GPU accel-
eration. Consequently, GEMM operations are often performed
on powerful multi-GPU systems, where advances in GPU
and interconnect technologies have enabled unprecedented
performance peaks. A straightforward way to execute GEMM
on a multi-GPU compute node is to utilize existing libraries
for distributed GEMM that have been extended with GPU
support [1]-[7]. However, these libraries result in inferior
intra-node performance [8], [9], as they are tied to the dis-
tributed paradigm and designed for scalability on hundreds
or thousands of workers, but not optimized for single-node
performance. To obtain the maximum achievable performance
on a single multi-GPU compute node, specialized libraries
have been designed specifically for this case [8]-[12].

A compute-intensive, highly parallel operation like GEMM
should theoretically reach the peak performance of a multi-

GPU compute node. However, contrary to this belief, in
practice, distributing the problem to multiple GPUs intro-
duces communication overheads, scheduling overheads, and
imbalance, resulting in a deviation from the expected peak
performance for increasingly more problem sizes in modern
multi-GPU nodes. To achieve near-optimal performance for
multi-GPU GEMM, libraries use a number of optimizations
targeting these overheads. First, communication optimizations
are applied to reduce the communication volume, increase
throughput via routing messages through faster links, and
overlap communication with computation. Load balancing
needs to be applied for both computation and communication.
At the same time, any decision-making for scheduling needs
to be lightweight, to minimize management and scheduling
overheads. Multi-GPU GEMM optimization usually involves a
specific subset of the aforementioned techniques, leaving room
for significant improvements for the rest [12]. For example, the
state-of-the-art XKBLAS [9] library reduces communication
volume and employs a lightweight DAG-based scheduling to
balance GPU work, but employs a simplistic heuristic-based
mechanism for routing and applies naive communication-
computation overlap and communication balancing techniques.
As a result, XKBLAS achieves good performance for regular
problems, but does not perform well in nodes with irregular
interconnects and non-square problem shapes. On the other
hand, the state-of-the-art PARALiA [12] library focuses on
advanced routing techniques and maximizes communication
overlap and GPU load balance, using performance models, but
this comes at the cost of increased communication volume, no
communication balancing mechanisms, and higher scheduling
overheads. Consequently, PARALIA provides robust perfor-
mance for regular and irregular problems, but sacrifices some
performance for generality and exhibits low performance in
smaller problems.

In this work, we focus on the GEMM operation, as it
constitutes the main building block for Level-3 BLAS and
is ubiquitous in both HPC and machine-learning applications.
We target multi-GPU compute nodes and offer an optimized
library that achieves near-optimal performance for all problem
sizes, shapes, and data placements. Our approach is based on a
static schedule that is calculated ahead of execution, whenever
a GEMM routine is called with a new set of parameters. Each
static schedule created for a given problem is reusable by
subsequent routine calls, zeroing out scheduling overheads for



all but the first call. Knowledge of the input parameters gives
us a complete view of the routine’s communication pattern and
scheduling characteristics, which we exploit to simultaneously
minimize communication volume, maximize interconnect uti-
lization, optimize overlap, and minimize imbalance and GPU
idle time.

In summary, we make the following contributions:

1) Starting from a baseline implementation of multi-GPU
GEMM, we introduce a set of communication, algo-
rithmic, and auto-tuning optimizations, inspired by both
GPU and distributed scheduling, leading to a near-
optimal multi-GPU GEMM that combines the best of
both worlds.

2) We provide an open-source multi-GPU GEMM library!
that simplifies efficient multi-GPU computation. Our
library is compliant with the BLAS standard, uses the
LAPACK data layout, and can handle any combination
of CPU- and GPU-resident matrices. This flexibility
allows both for easy drop-in replacement of existing
GEMM routines, and integration with libraries that al-
ready distribute data across multiple GPUs.

3) We evaluate our optimized GEMM on a multi-GPU
NVIDIA HGX system with 8 NVIDIA A100 GPUs in-
terconnected with NVLink3 and NVSwitch2, for single
and double precision, using a variety of GEMM prob-
lem sizes, shapes and matrix memory placements. Our
results show that our implementation offers 1.37x and
1.29x higher performance over state-of-the-art libraries
on average, for single and double precision respectively.

II. RELATED WORK

The work related to single-node multi-GPU GEMM can be
split into two categories: 1) distributed GEMM algorithms,
which define the basis for GEMM communication optimiza-
tion techniques for multiple workers, 2) libraries that support
multi-GPU execution.

A. Distributed GEMM

Distributed GEMM optimization is a problem with decades
of previous work, with different algorithms focusing mainly
on communication reduction. Cannon’s algorithm [13] is the
first parallel GEMM for square problems, later extended by
Fox et al. [14] to more problem shapes and processor grids.
PUMMA [15] adds support for transposed matrices and ex-
plores data placement optimization for the first time. SUMMA
[16] builds on top of PUMMA, optimizing its communication
and adding blocking and communication/computation overlap,
marking the commonly known 2D GEMM algorithm. Agarwal
et al. [17] show that a 3D decomposition of GEMM is
better if memory is not a constraint. Solomonik and Demmel
[18] extend this idea for practical use, introducing the 2.5D
GEMM algorithm that balances decomposition between 2D
and 3D, based on available memory, resulting results in op-
timal communication for square matrices. CARMA [19] uses

! Available at https://github.com/p-anastas/PARALIA-GEMMex

a recursive algorithm to also optimize GEMM asymptotically
for irregular shapes. Finally, COSMA [4] identifies that the
CARMA algorithm can lead to increased communication, and
provides an algorithm based on the red-blue pebble game that
is communication-optimal for any shape and process number
(M, N, K,p). From these approaches, only COSMA provides
an implementation that also supports GPUs, based on CUDA-
aware MPL

B. GEMM on multi-GPU compute nodes

In contrast to large-scale distributed systems, where research
on GEMM focuses on communication-optimal algorithms
and complex process decomposition grids, multi-GPU nodes
feature a fairly small number of GPU devices. Therefore,
a number of Level-3 BLAS libraries, supporting GEMM,
focus on scheduling, overlap, and communication optimization
techniques. Early approaches extend existing multi-core or
distributed BLAS implementations with GPU support. Specif-
ically, Kazushige et al. [20], propose a tiled BLAS algorithm,
distributing tiles to GPUs, with no GPU-specific optimizations.
MAGMA [1] extends a multi-core BLAS library using a
static tile scheduler to target GPUs. DPLASMA [2] combines
a distributed baseline with the optimized DAG-based task
scheduler of PaRSEC [3] for tile distribution and computation
on GPUs and introduces the notion of caching and reusing
tiles in GPU memory buffers. All these approaches use a tiled
data layout, bit are not compatible with LAPACK and follow
a full-offload paradigm, assuming all input data resides on the
CPU memory.

NVIDIA’s cuBLASXt [10] and its BLAS-compliant wrap-
per NVblas [11] overcome this limitation, enabling LAPACK
layout input matrices on CPU or any GPU memory and
serving as the state-of-practice multi-GPU offload baseline.
While cuBLASXt increases programmability and is a good
drop-in replacement option for nodes with a single GPU, its
decomposition and scheduler design are simplistic and result
in severe performance degradation on multi-GPU nodes. To
overcome this, BLASX [8] targets both programmability and
robust performance for multi-GPU nodes, sharing the BLAS-
compliant layout of NVBLAS, but internally decomposing the
problem data to tiles similarly to PARSEC. BLASX improves
the GEMM inter-GPU communication pattern with a 2D-
block cyclic decomposition, introduces a cache-like hierar-
chy that favors point-to-point GPU < GPU instead of
CPU 4 GPU transfers whenever possible, and includes a
work-stealing mechanism for GPUs to improve load balancing.
XKBLAS [9] provides a modern level-3 multi-GPU BLAS
library based on the lightweight DAG-based XKaapi [21]
scheduler, that reduces scheduling overheads, fights imbalance
more effectively than BLASX. An extension of XKBLAS
[22] improves its routing algorithm from GPU < GPU
preference to a distance-based heuristic that also considers
the type of point-to-point connection between GPUs, resulting
in state-of-the-art performance, when all matrices initially
reside on the CPU. PARALIA [12] focuses on providing good
performance regardless of the data placement, problem shape



and system homogeneity, through modeling and auto-tuning.
PARALIA improves routing with a more accurate bandwidth-
based routing algorithm, and can automatically use fewer
devices based on modeling the problem bottlenecks to con-
serve energy, which considerably increases energy efficiency
at the cost of higher scheduling overhead compared to DAGs.
PARALIA outperforms XKBLAS in mixed data configura-
tions and provides a better trade-off between energy and
performance. While both XKBLAS and PARALIA provide
solid performance for their targeted problems, they still fall
short in reaching the peak performance of modern systems,
for a considerable number of explored problems that remain
communication-bound.

Alternative approaches target large-scale systems with
multi-GPU nodes, and support very large problem sizes,
with their data being pre-distributed to GPUs in PBLAS-like
layouts. SLATE [5] implements the SUMMA [16] algorithm
for GPUs, distributing problem data on their memories with
a PBLAS user-friendly C++ data layout. PARSEC [3] offers
a similar approach, which can support larger problems than
SLATE with better scalability. cuBLASMp [7] is the most
recent NVIDIA implementation for multi-node multi-GPU
GEMM for pre-distributed PBLAS data layout.

To summarize, GEMM optimization is a complex prob-
lem with extensive previous work both for distributed and
multi-GPU systems. Distributed approaches focus primarily on
communication-optimal algorithms and scalability for PBLAS
data layouts, while approaches specifically targeting multi-
GPU nodes focus on intra-node performance for the BLAS
LAPACK layout. In this work, we target multi-GPU compute
nodes, aiming to provide robust, near-peak performance for
any problem size and type, and any initial data placement.
We note that state-of-the-art multi-GPU libraries for linear
algebra [8], [9], [12], [22] already implement some of the
optimizations introduced in the next section, like caching
(Section III-C), overlap (Section III-B) and BW-based routing
(Section III-D). Our work refines these optimizations, em-
ploying a simpler caching scheme, achieving full (rather than
partial) overlap of all computation/communication streams,
and reducing routing overhead through static scheduling. Ad-
ditionally, our work introduces novel optimizations including
ETA-based routing (Section III-D2), RONLY-fetch batching
(Section III-E), lazy WR-tile fetching (Section III-F) and ETA-
based sub-kernel ordering (Section III-G).

III. IMPLEMENTATION

In this section, we describe the design of a static sched-
ule inspired by distributed and multi-GPU approaches, that
optimizes GEMM for multi-GPU. From the available BLAS
or PBLAS standard input layouts for GEMM, we follow
the BLAS standard [23], with the input matrices stored in
LAPACK layout, residing either on host or GPU memory [8]-
[10], [12]. A GEMM routine following the BLAS definition
performs the operation:
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Fig. 1. An example of our GEMM 2-level hierarchical decomposition for a
square problem (M, N, K) based on the SUMMA blocking algorithm [16].
The first level depends on the number of workers (here: 4 GPUs ) split to
a 2D grid (r,c¢) = (2,2) which decomposes (M, N) to (M, N.) chunks,
leaving K untouched. Then, the second level is splitting (M, N, K) to 2D
square (T, T') blocks, which creates square GEMM sub-problems and enables
communication/computation overlap.

Assuming that C,,; is stored in-place in the Cj, buffer, the
operation requires three matrices, A(M x K), B(K x N) and
C(M xN), with A and B being read-only (henceforth denoted
as RONLY) and C' being read and written (henceforth denoted
as WR) internally.

A. Hierarchical decomposition

The decomposition of matrices A, B, and C' determines the
subproblems to be executed on each GPU and also determines
the communication pattern. In decomposing the problem, we
opt to avoid inter-GPU sharing of the C' matrix, since it leads
to additional inter-GPU synchronization and extra communi-
cation for multi-GPU execution [8], [9], [12] . We select a 2D
decomposition similar to the SUMMA [16] algorithm, as a
simple and practical solution, upon which we apply a number
of optimizations.

Figure 1 depicts our proposed hierarchical decomposition
based on the blocking version of the SUMMA distributed
algorithm [16]. The first decomposition level is based on the
number of GPUs, which are the processing elements, viewed
as a 2D grid of r x ¢ GPUs. We decompose C' matrix into
2D-blocks of M, x N., and assign each block individually
to a single GPU. We then decompose matrices A and B into
blocks of rows of size M, x K and blocks of columns of size
K x N, respectively. The row-blocks of matrix A are assigned
to ¢ GPUs and the column-blocks of matrix B to » GPUs.

At a second level, the blocks of A, B, and C on each GPU
are further decomposed into 2D blocks, or else ftiles, of size



T x T, applying padding where required. This results in a
3D grid of & x & x X square GEMM subproblems, each
requiring different input and output tiles. To obtain the GEMM
routine output C,,;, we then need to compute the tile-based
outer-product [16]:

K

T
Cij=b-Cij+ Y a- A x By
k=0

2

fori:O—>¥ andj:O—>¥.

The value of T' 1) should avoid excessive padding, 2) must
be small enough to create a sufficient number of sub-problems
for overlap and 3) must be large enough to avoid kernel,
transfer, and scheduling latencies [12], [24]-[27]. To ensure
a balance between the three, we minimize a composite cost
function, based on three heuristics. The first heuristic tries
to avoid padding by penalizing any remainder when dividing
M, N, K to tiles:

i
2 7

ie{M,N,K},i{0

Cpadding (T) =

The second heuristic concerns the ability to overlap and
penalizes the problem percentage that cannot be overlapped,
estimated as the inverse of the overlap pipeline length, equal
to the number of sub-problems per GPU:

gpu_num

Coverlap(T) =M _ N _ K

TXTXT

The last heuristic for latency uses a minimum pre-selected tile
size Tinin (default = 2048), large enough to avoid high latency,
and penalizes smaller tiles proportionally:
Tmin x 0.2
Clatency(T) = #

We apply these heuristics before second-level decomposition
by selecting the tile size 7T that minimizes Cipq(T) =
Cpadding (T) + Coverlap(T) +Clatency (T)’ forall T' =128 —
min(M,, N., K).

B. Communication/computation overlap

The end-to-end offloading of a GEMM subproblem that
results from decomposition to a GPU requires fetching the
input dependencies, i.e. the required input tiles A, Br, and
Cr, computing the kernel and potentially writing back the
result C'r to the location of the initial matrix. We there-
fore consider each decomposed subproblem as a five-task
process: tasks (1)-(3) of fetching the input dependencies,
fetchdst(Az), fetch®si(Br), fetchdst(Cr), task (4) of com-
puting the kernel compute, and task (5) of writing back the
output W B3.¢(Cr). The subproblems and their corresponding
tasks enable intra- and inter-GPU parallelism, as the different
tasks can be scheduled on different streams.

Figure 2 depicts a simplified example of scheduling
the first four sub-problems of the aforementioned
decomposition of Figure 1 on gpug and gpu;, respectively.
We asssume that matrices A, B, and C initially reside
on the same location (A;,c = Bioe = Cioc). Placing the
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Fig. 2. The process of executing the tasks of the first four sub-problems as
seen in Figure 1 on two GPUs in parallel. Tasks of different types (fetch,
compute, WB) are placed on different streams and overlapped in a pipelined
manner for each GPU, using different streams for intra-GPU parallelism.

different types of tasks (fetch, compute, and W B) on
different streams enables overlap in a pipelined manner.
This reduces the total time for a subproblem from
Ltotal = tfetch(A) + tfetch(B) + tfetch(C) + tcompute + tWB(C)
to approximately tiotar = Maz((tfeten(a) + tretcn(B)y +
tfeten(C)), teompute; tws(C)) [26]. In our implementation,
overlap works similarly, but additionally, we enqueue
the data transfer tasks (fetch, WB) on (gpu_num + 1)?
different CUDA streams, enabling simultaneous bidirectional

point-to-point ~ communication  between all  devices
plus the host memory. Consequently, if A, Bioc
and C),. are discrete locations/device memories, the

fetch tasks are also overlapped, resulting in i1 =~
Max(terch(A), Leteh(B), Leteh(C)s teomputes tw (). For
computation/communication overlap, we schedule the
compute tasks, performed using cuBLAS [28] kernels, on a
configurable number of CUDA streams per GPU (the default
is 8). Finally, task dependencies between streams are defined
and respected with CUDA events [29] similarly to previous
approaches [8], [9], [12].

C. Data caching / Communication avoidance

To avoid excessive communication, most multi-GPU BLAS
implementations [8], [9], [12] cache the tiles that are fetched
to a GPU memory for a specific subproblem, to be reused
by subsequent subproblems. Caching is necessary for problem
sizes that do not fit in the GPU memory, and important for
performance as it reduces the communication volume, but its
management adds some overhead. To avoid this, we refrain
from a complex caching mechanism, based on the fact that,
in recent systems, the GPU memory sizes are large enough to
hold the necessary data and GEMM becomes compute-bound
long before memory capacity becomes an issue. Instead, we
use a buffer per GPU, denoted as SoftBuf[i], with i = 0 —
gpu_num. This buffer is allocated whenever a GEMM routine
is called for the first time, tailored to the memory requirements
of the decomposition of Figure 1 for that specific problem. The
buffer stores the necessary tiles throughout the entire routine
lifetime. If a subsequent GEMM routine has a larger memory
requirement, the buffer is automatically resized.

1) Offloading problems exceeding memory capacity: 1t is
common for modern multi-GPU nodes to feature large host
memories (in the order of TBs) that far exceed the capacity
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Fig. 3. An example of bandwidth-based routing misprediction that results
in increased GPU idle time. When the sub-problem with input dependencies
(Aoo, Boo, Coo) is scheduled in gpug, Apo and Bog are already available
in gpu1 and gpus from previous tile fetches. Since BW-based routing is
unaware of interconnect load, it copies Agg from gpu; and Bpg from gpusg
since these transfers utilize higher P2P GPU bandwidth. In the case of Agg,
this results in gpug compute blocking longer than if Agp was fetched from
the host instead, due to a high pre-existing load in gpui — gpuo.

of GPU memory (in the order of tens of GBs). For the
specific case of large problems, where A, B, and C all reside
in host memory and the SoftBujf memory requirements
exceed the GPU memory capacity, we employ an additional
level of decomposition on the host side, before applying
the hierarchical decomposition of Section III-A. This decom-
position is automatically triggered upon routine invocation,
when the problem size would result in any SoftBuf][i] larger
than a preset percentage (default = 80%) of the available
GPU memory on gpu;. We decompose the original problem
dimensions My, Ny, Kr in a 3D manner into square tiles
of size 17, resulting in a 3D grid of GEMM subproblems
of size¢ M x N x K, with M = N = K = T. We
select the maximum 77, that satisfies the memory requirement
for the SoftBuf buffer. We then schedule each subproblem
sequentially onto the GPUs, with each subproblem utilizing
all the optimizations described in this work. We note that this
limits the communication-computation ratio and consequently,
the total performance for the (M, Ny, K1) problem to that
of the (T, T, T1,) problem.

D. Communication routing

The main communication volume in multi-GPU GEMM
results from the read-only (RONLY) tiles A7, By of matrices
A and B, which must be fetched to multiple GPUs, where the
relevant subproblems are to be executed. During execution,
the first fetch of each RONLY tile, e.g. Ap, to a gpu;
requires a transfer from its original matrix location in_loc,
e.g. fetchi?" (Ar), that stores Ay to SoftBuf|gpu;]. On
the other hand, subsequent tile fetches to any other device
gpu; can either fetch a copy of the tile from in_loc or from
gpu;, which requires a communication routing decision.

1) Bandwidth-based routing: A common approach to per-
form communication routing is to use the bandwidth between
the different memory locations, based on the interconnect

Link availability matrix Tile ETA vectors
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Fig. 4. An example state of LAM and ETA vectors for two tiles Agp and
Boo. The tile ETA vectors show when these tiles should be available to GPUs
1 and 2, respectively (initial on host memory - ETA[h] = 0), while the LAM
stores an estimation for the interconnect load up to that scheduling state.

topology [8], [12], [22]. The selection of the optimal route
is based on the available bandwidth. For the example given
above, where A may reside on both in_loc and gpu;, the
decision boils down to comparing BW??%! and BWgp,; and
selecting the route with the highest bandwidth. We estimate the
bandwidth of the different (gpu_num + 1)? routes / streams

empirically with micro-benchmarks, as in [12].

2) Accounting for interconnect load: While bandwidth-
based routing can be effective because it increases the average
bandwidth utilization, the goal of communication routing is to
minimize the estimated time of arrival (ETA) of a tile, i.e. the
end-to-end time to fetch the input data to the target GPU, so
that the compute task starts as early as possible. Bandwidth-
based routing fails to take into account the pre-existing load
over a link, which may delay the time of arrival of this tile. An
example is depicted in Figure 3, where Ago needs to be fetched
to gpug. Bandwidth-based routing selects to fetch the tile from
gpuy, since BWgbio > BWJIPS0, without accounting for the
high load on that stream from previous copies, resulting in the
delayed arrival of Ay to gpug, and rendering gpug idle.

To avoid this effect, we optimize communication routing
by considering the interconnect load when selecting the route
for a tile transfer. To achieve this, we define a 2D matrix
for the link availability (henceforth denoted as LAM), which
stores the estimated time each src¢ — dst communication
stream will be available (e.g. without remaining load). We
additionally define the ETA vector for each decomposed tile,
which stores the estimated time that a valid copy of this
tile will arrive at each memory location. Initially, all LAM
fields are set to zero. All ETA vector fields are set to inf,
except for the initial data location of the tile, which is set to
zero (ET Alin_loc] = 0). During scheduling, whenever the
scheduler needs to take a routing decision, to fetch a tile of
size bytes to dst, the scheduler combines the LAM and ETA

vectors with the estimated fetch cost ¢ = Z%2& searching
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Fig. 5. An example of performing three fetches of the same data to three
GPUs either one by one (left) or with a simultaneous broadcast-like batched
fetch (right) that uses p = 8 sub-transfers to overlap the process in a pipelined
manner. Batching all fetch operations together results in the same fetch cost
for gpu;, but considerably decreases the fetch costs for gpu; and gpug.

for the source ¢ with the lowest ET A,,,;,,, Where:

gpu_num+1
min
=0

ETApin = (max(ETA[i], LAM [dest][i]) + t35!)
Then, the LAM and tile vector are updated for the new transfer
to LAM|dest][i] = ET Aldest] = ET Apnin. The aforemen-
tioned LAM update also happens for C tile fetches and write-
backs to take into account their interconnect load as well but
without routing optimization. Figure 4 shows the LAM for the
example in Figure 3 ahead of routing the transfers, with two
example ETA vector states for tiles Agg and Bgg. Following
our ETA-based routing algorithm, Cyy will be fetched from
host memory (since it is only available there), Byy will be
fetched from gpus since max(LAMI0][2], ETA_Byl[2]) +
t3 < max(LAM/[0][h], ETA_Buyolh]) + 19, and Ay will be
fetched from the host since max(LAM[0][h], ET A_Ago[h])+
9 < max(LAMI[0][1], ET A_Aoo[1])+t}. ETA-based routing
provides the optimal decision based on past and current
knowledge (e.g. load and bandwidth) for the fetch of each
RONLY tile.

E. Optimizing RONLY tile transfers with batching

The standard approach for communication routing in pre-
vious work [8], [9], [12], [22] is to dynamically optimize the
route of a fetch task individually, when the task is scheduled.
On the other hand, our static schedule which is constructed
ahead of execution allows us to batch tile transfers to different
GPUs, with a broadcast-like fetch operation to multiple GPUs,
e.g. fetchi?"9P%(T). Figure 5 shows an example of how
a batched fetch works; we split the transfer of the same tile
to three locations into p (default = 8) smaller transfers and
overlap them internally in a pipelined manner. This decreases
the total cost of fetchiye """ WP (T) from tferen = tIPYi +
tapus + L9k 10 Eferen A~ max(tIPL top, 7 9044 ), consider-
ably decreasing the fetch cost for all but the first transfer des-
tination (gpu;). This optimization has a greater impact as the
number of GPUs increases due to more data-sharing between
GPUs. For example, for a 4-GPU system the tiles of matrix A
are shared between 2 GPUs and require fetchire 97" (Ar)
operations, but on an 8-GPU system they are shared by 4
GPUs and require fetchgp. 97" 9P 9P (ALY operations.
We apply this to all RONLY tiles of A and B.

Reactive routing (SoTA) Batched-fetch routing
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Fig. 6. An example of routing the first GEMM sub-problem on each GPU
using a) reactive routing (left) employed by the SoTA and b) ETA-based
proactive routing combined with RONLY batched-fetch (right) used in this
work. Reactive routing optimizes the effective bandwidth by using faster
links whenever possible, but results in imbalanced interconnect usage, streams
becoming idle, being blocked by transfer dependencies, and varied GPU
compute start times. On the other hand, our approach balances interconnect
usage, mitigates idle streams by internally pipelining transfers, and results in
a simultaneous start for compute in all GPUs.

1) Batched-fetch routing: In addition to the decreased fetch
cost, batching RONLY-tile fetches is beneficial to commu-
nication routing, as it opens up additional route options
for each transfer. In batched fetches, the pipeline order is
not important (e.g. fetchire """ (T) ~ fetchir.? """ (T)),
since the resulting fetch costs are balanced for all desti-
nations. We therefore apply the LAM ETA-based routing
of Section III-D2 in the following way: when a batched-
fetch operation fetchir. """ (T) is scheduled for routing,
we examine the individual steps of the composed operation,
(e.g. fetchdP¥i, fetchyp,:(T),...) and apply the LAM ETA-
estimation algorithm iteratively, for all possible order combi-
nations, selecting the order gpus_best_order that results in
the minimum ETA. Then, we update all intermediate LAM
links and all tile ETA destinations based on the ETA,,;n
of the selected order and schedule the batched-fetch transfer
(fetchgﬁgus_best_order}).

To show the importance of this optimization in multi-
GPU GEMM routing, Figure 6 compares the reactive routing
employed by previous work against our ETA-based proactive
routing + RONLY-tile batched-fetch for the first 4 scheduled
sub-problems (one on each GPU), excluding C tile fetches
from the pipeline (more on this in Section III-F). Our approach
significantly reduces GPU idle time (45% lower on average,
60% best case), overlaps all communication streams internally,
avoids blocking due to transfer dependencies, and provides a
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Fig. 7. Scheduling dependencies and computing four sub-problems on Cyo,
with a normal offload (top) or by using the WR-lazy fetch approach (bottom).
WR-lazy fetching reduces GPU idle time, removing Cpo from the input
dependencies of the first sub-problem on the cost of a lightweight extra
computation before writing back the result.

perfectly load-balanced execution in all GPUs.

F. Optimizing WR tile transfers with lazy fetching

Our routing and batching optimization discussed in the pre-
vious subsections targets the RONLY tiles, which are fetched
in multiple GPUs. On the other hand, the WR tiles of the C'
matrix are exclusive to each GPU (see Figure 1) and constitute
unmitigable fetch volume, which in the worst-case (nothing
cached) scenario for square matrices can reach 1/3 of the
total fetch volume. As the batched-fetch optimization does not
apply in this case, we opt to limit GPU idle time by delaying
the transfer of the C tiles, to achieve better computation-
communication overlap. To achieve this, we decompose the
original GEMM operation of Equation 1 into:

C'=a-Ax B(GEMM), Couy =b-Cyp + C' (AXPY)

The original GEMM operation is decomposed to 1) a GEMM
operation without an input matrix C;,, (equivalent to a GEMM
with b = 0) and 2) a lightweight addition operation that
accumulates the result of the first to the output matrix Coyy
right before writeback (equivalent to an AXPY operation with
alpha = b). In this way, we decouple the computation-
heavy part of the GEMM kernel (a - A x B) from the Cj,
input dependency. Figure 7 shows an example of how this
changes GEMM offloading for Cyy. The dependencies of
this first subproblem (A()(),BO(],CQO) change to (AO(],B()()),
resulting in lower GPU idle time, as we lazily fetch(Cyg) at
the end of the GEMM computation and update it with an
AXPY operation before writing it back. This optimization is
beneficial to problems where the C' matrix initially shares
the location of either A or B. In all other cases, it does
not improve the performance, as the input tiles Ay, By, Cp
use different streams when fetched, and their transfers are
therefore overlapped. Moreover, to enable this optimization, an
additional buffer memory of sizeof(C')/gpu_num is required
per GPU, as both C%. and Cr;, need to be stored before
computing and writing back C'r,,+. We therefore selectively
apply this optimization only in cases where A;,. == Cj,. OR
Bioe == Cloc~

Algorithm 1: The static schedule algorithm
Data: GEMM params
(A; B, C7 M7 N7 K, Al007 Bloca Cloc)
1 if (new params) then
2 SP[num_sp| +
decompose2D(1' = T'_min, gpu_num, params)

3 if (Aloc == C'loc OR By == Cloc) then

4 S P.adjust_SPs_WRLAZY()

5 SoftBuf <—assertMemRequirements(SPs)
6 LAM = {0}, sched_sp =0

7 Runtime task queue RT'Q = []

8 while (sched_sp < num_sp) do

9 for (gpu; in gpu_num) do

10 currSP = select_SP(gpu;, SP, LAM)
11 tasklist = split_to_tasks(currSP)
12 for (task in tasklist) do

13 if (task is fetch) then

14 task.optimize_routing(LAM)
15 LAM .update_load(task)

16 RTQ.append(task)

17 sched_sp + sched_sp + 1

18 for (task in RT(Q) do task.fire() ;
19 sync_GPUs()

G. The static schedule

Finally, we provide an end-to-end GEMM implementation
that combines the described optimizations to an algorithm as
shown in Algorithm 1. The first part of the algorithm (lines
1-17) runs every time a GEMM routine is invoked with a
new set of params (input, problem size, matrix locations),
calculating an optimized runtime task queue RT'Q) for that
problem. First, the GEMM operation is decomposed to sub-
problems (in line 2), which are in turn assigned to devices
and adjusted for the WR-lazy algorithm if this is beneficial
for the problem params (in line 3). Then, an iterative part
runs (in lines 8-17), selecting sub-problems in devices with a
round-robin order until all sub-problems have been scheduled.
The sub-problem order per GPU is defined by a cost function
select_SP (in line 10) that returns the optimal sub-problem
based on the current schedule state. After a sub-problem is
selected, it is split into tasks (in line 11) as described in
Section III-B. The fetch tasks are optimized (in lines 14-15)
as described in Sections III-C,III-D, and III-E and each task
is enqueued in RT'Q (line 16). After this part completes, the
RTQ for this set of params is stored internally and reused
for all subsequent problems using the same params during
a program’s lifetime. The second part of the algorithm (lines
18-19) simply iterates over the RT'Q) and fires all tasks in
their corresponding streams and GPUs.

1) Optimizing sub-problem scheduling order: It is well
accepted that the order with which sub-problems are scheduled
to GPUs is important because it affects 1) communication
routing and 2) idle GPU time [3], [9], [12]. A common



TABLE I
THE NVIDIA HGX TESTBED CHARACTERISTICS.

Karolina GPU | CPU GPU
Computation: 2 x AMD Zen 3, 8 X NVIDIA A100

7763 CPU FP peak 17.2* TFlop/s

128 cores @ 2.45 GHz | DP peak 17.2* TFlop/s
Memory: 1TB DDR4 40 GB HBM2

1.56 TB/s

Interconnect: PCle Gen4 x16 NVLink3 / NVSwitch2
Compiler: g++ 11.2.0 CUDA 12.2
Opt. flags: -03 -03, -arch=sm_80

technique to optimize the sub-problem order is to prioritize
the sub-problems with the minimum fetch operations [9]. We
use a similar technique for select_S P, but instead of favoring
the minimum fetch operations, we use ETA estimation for
these fetches, by leveraging the LAM, in combination with
the tile dependencies of each sub-problem, as described in
III-D2. This method is load-aware and results in the minimum
amount of idle time for compute tasks, since it prioritizes the
ones whose fetch dependencies are expected to be satisfied
earlier.

IV. EVALUATION

In this section, we evaluate our GEMM routine implemen-
tation performance and compare it with the state-of-the-art.
First, we use a common square GEMM dataset to compare the
performance of our implementation against existing libraries
and analyze the performance contribution of each optimization
introduced in this work. We then expand the dataset with
non-square matrices and a variety of data placements to
show the performance robustness of our approach. Finally, we
discuss our decision to exclude memory constraints from our
implementation design and describe how we extend our imple-
mentation to run such cases without sacrificing performance.

A. Experimental Setup

1) Testbed: For the performance evaluation, we use an
NVIDIA HGX system, which is part of the acceleration nodes
of the Karolina HPC cluster [30], and is described in Table I.
Each node consists of 8 NVIDIA A100 GPUs connected
with an advanced inter-GPU grid based on NVLink3.0 and
NVSwitch2.0, that enables simultaneous bidirectional point-
to-point communication between all GPUs with an aggregate
bandwidth of 4.8 TB/s (600 Gb/s bidirectional per GPU). The
GPUs are connected to the host memory via PCiE with an
average bandwidth of 96 Gb/s (12 GB/s per GPU) for all CPU-
GPU communication. The GPU clock frequency of the A100
GPUs is tuned for higher energy efficiency, resulting in 12%
less peak performance (17.2 vs 19.5 TFlops per A100 GPU).

2) Benchmark methodology: We use the following method-
ology for all experiments for our implementation and all
compared libraries. We perform 10 warm-up runs followed
by 100 timed iterations for each GEMM problem size and
report the median time/performance of these runs. For time
measurements we use clock_gettime with device syn-
chronization (cudaDeviceSynchronize ()) after each it-

eration (e.g. no inter-loop overlap of GEMM calls). Each
matrix is initially stored in a single memory location, to
maintain compatibility with the BLAS API standard and to
be in line with previous multi-GPU BLAS libraries which
also use this data layout. For host memory matrices we
use interleaved memory across NUMA nodes, to achieve a
balanced CPU-GPU bandwidth between GPUs. We initialize
all matrices with random values before execution, and then pin
them to memory, to enable asynchronous CUDA calls. GPU
caches/buffers are allocated once and reused by subsequent
iterations. We flush these buffers after each iteration. Finally,
all benchmarked libraries use the same cuBLAS-11 single-
GPU cuBLAS{Dtype }GEMM routines at their backend.

3) Dataset: For performance evaluation, we use two
datasets: a regular dataset with square problems, as also
reported in related work [6], [8], [9], and an irregular dataset
which extends the regular one with mixed initial locations
for the matrices, and extra fat-thin and thin-fat problems
that divert from the usual GEMM communication/computation

ratio [12]. For the regular dataset, we select 12 problem

sizes (Myy = Nog = Koy = (5120 227124 16384))

that are communication-bound on our testbed, based on their
operational intensity, and 7 large problem sizes (Myy = Ny =
K, = (20480 ep=2048, 32768)) that are expected to be
computation-bound. We run the selected problem sizes with
two configurations. In the first configuration, all matrices ini-
tially reside on the CPU memory (h, h, h), therefore we expect
the major bottleneck to be the PCle bandwidth. In the second
configuration, all matrices initially reside in the memory of
gpug (0,0,0), therefore transfers can directly use the NVLink.
The irregular dataset is described in Section I'V-E.

B. Evaluation of performance optimizations

We first evaluate the optimizations described in Section III
incrementally, to assess how each contributes to total perfor-
mance. Figure 8 shows the performance of FP64 GEMM
using 8 GPUS for the regular dataset, using our implemen-
tation with our optimizations applied incrementally. We note
that the optimizations that are designed to work together (1)
caching and overlap, 2) ETA-based communication routing
and RONLY-batch fetches, and 3) WR-lazy fetches with ETA-
based ordering) are also evaluated in pairs. As the baseline,
we use a naive implementation of SUMMA decomposition
to GPUs (Section III-A) without any optimizations, and the
speedup of each bar is calculated with respect to the bar
at its left, assessing the impact of ‘stacking’ an optimiza-
tion. First, minimizing communication volume with caching,
together with overlapping communication with computation
offers a performance improvement of almost 2x. Adding BW-
based communication routing further improves performance
by 1.33x for the (h,h,h) case by favoring faster GPU-GPU
transfers, but has no effect when data are already in gpug,
since all GPU-GPU connections have equal bandwidth. Swap-
ping the routing to ETA-based routing, paired with batching
fetches of RONLY tiles improves performance for both data
configurations by 1.18x on average, by improving routing,
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Fig. 8. The performance of each optimization described in Section. III for
FP64 square GEMM (M=N=K) using all 8 GPUs on our NVIDIA HGX
testbed (system peak = dashed line), for the regular dataset of Section IV-A.
The two clusters correspond to different configurations. Optimizations listed
on the legend are applied incrementally left-to-right (yellow = Baseline,
blue = all optimizations enabled). Each optimization mitigates a different
bottleneck of multi-GPU GEMM, resulting in increased performance in both
cases regardless of the differences in communication pattern, overlap, and
load balance because of the initial placement.

increasing overlap and reducing GPU idle time. Finally, WR-
lazy fetching, together with an improved ETA-based order
selection for firing sub-problems results in an additional 1.1x
speedup due to reduced GPU idle time.

C. Comparison with state-of-the-art

Next, we compare our implementation against the state-
of-the-art multi-GPU libraries that attain the highest GEMM
performance, by performing weak scaling experiments for the
regular dataset using the full node (8 GPUs) of Table I. In
particular, we evaluate XKBLAS [9] and PARALIiA [12] and
exclude previous approaches that they outperform [6], [8]. We
also evaluate cuBLASXt [10], as the state-of-practice library,
despite its inferior performance [8], [9], [12]. We evaluate
GEMM FP64 (double) and FP32 (float) performance. We note
that our implementation also supports FP16 (half) precision,
but there are no previous multi-GPU libraries that support
FP16 for comparison, so we omit this from our results.

Figure 9 shows the performance of this work against the
state of the art for FP64 GEMM using 8 GPUS for the regular
dataset. For the case where all matrices initially reside on the
host memory, which is bound by the PCIe bandwidth, our work
offers high performance to smaller problem sizes. On average,
our work outperforms cuBLASXt, XKBLAS and PARALIA
by 3.42x, 1.4x and 1.31x, respectively. For the case where
the data initially reside on a GPU, and PCle transfers are
avoided, PARALiA results in high overheads for smaller
problem sizes, and XKBLAS offers lesser and non-robust
performance because of load imbalance. Our implementation
mitigates both types of overheads effectively, outperforming
cuBLASXt, XKBLAS, and PARALIA by 10.3x, 1.23x and
1.26x, respectively, on average.
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Fig. 9. The square GEMM (M=N=K) FP64 performance for the regular
dataset of Section IV-A for 8 GPUs on our NVIDIA HGX testbed (system
peak = dashed line). Our approach offers robust performance regardless of the
data placement, avoids imbalance, and outperforms all previous approaches,
being more effective in communication-bound problem sizes (12 leftmost data
points).
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Fig. 10. The square GEMM (M=N=K) FP32 performance for the regular
dataset of Section IV-A for 8 GPUs on our NVIDIA HGX testbed (system
peak = dashed line). Using FP32 results in more compute-bound problems due
to half the communication volume, coupled with the same FP32 performance
peak. Our approach adjusts to the new ratios better than previous libraries,
reaching the peak faster and providing superior performance for all problems.

On a similar note, Figure 10 shows the performance for
FP322 GEMM. We note that the peak performance is the same
for FP32 and FP64, as only cuBLASDGEMM (FP64) internally
utilizes the FP64 tensor-cores of the A100 GPUs, unlike
cuBLASSGEMM (FP32). Coupled with half the communication
volume for FP32 transfers, this results in less communication-
bound problems for the same dataset. While the performance
of previous approaches increases somewhat faster than FP64
with problem size, XKBLAS still faces imbalance and PAR-
ALiA faces high overhead issues. Our approach, on the other
hand, adapts well to the new communication/computation ratio
for all problem sizes, approaching peak performance faster and
still outperforming cuBLASXt, XKBLAS and PARALiA by
2.7x, 1.37x and 1.28x for the all-data-CPU case and 10.8x,

2not to be confused with TF32



B cuBLASXt [ PARALIA ® All-data-CPU(h,h,h)
[ XKBLAS Bl Thiswork  a  All-data-GPU(0,0,0)
136 -
68 1 [M,N,K]=8K (small) -
34 //:?:///‘
17 &
‘></\><;<
% 136
g [M.N,K]=16K (medium) .
= 68 ///0
S 34 :
C
© / /./.
g i -
&
136
[M,N,K]=32K (large) /.‘
- — o
34 /?\‘\‘
17
T T T T
1 P 4 8
Number of GPUs
Fig. 11. Strong scaling analysis of three square GEMM (M=N=K) FP64

problem sizes for two data placements and variable number of GPUs on
our NVIDIA HGX testbed (y-axis in log scale, system {1,2,4,8} GPU
peak = dashed lines). Our approach provides the best performance for all
configurations, and scales better than state-of-the art libraries as the number
of GPUs increase, especially for the smaller more communication-bound
problems.

1.42x and 1.31x for the all-data-GPU case, respectively.

D. Strong-scaling analysis

We then present a comprehensive strong-scaling analysis to
evaluate the performance efficiency of our approach as we
increase the number of utilized GPUs for a given problem
size. We compare the performance of our approach against the
cuBLASXt, XKBLAS, and PARALiA. We note that GPUs in
our NVIDIA HGX testbed partially share the PCle bandwidth
in pairs (GPU 0 with GPU 1, GPU 2 with GPU 3, etc.),
therefore the peak CPU-GPU bandwidth is the same when
using 4 and 8 GPUs (GPU-GPU bandwidth is not affected).
We employ the placement that maximizes bandwidth for
any number of GPUs, (1 GPU — [0], 2 GPUs — [0,2],
4 GPUs — [0,2,4,6]), however we highlight that problems
that utilize the PCle (e.g. all data on the CPU) are less
communication-bound when using < 4 GPUs. Therefore,
scaling from 4 — 8 GPUs becomes more challenging than
1 -2and 2 — 4.

Figure 11 shows the performance of GEMM FP64 for three
different square problems and two different data configura-
tions, one where all data initially reside on the host memory
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and one where all data initially reside on GPU memory, for
1, 2, 4, and 8 GPUs. XKBLAS encounters memory errors on
1 and 2 GPUs for the larger problem size of M = N =
K = 32K and fails to complete the execution. First, in the
scenario where all data initially reside on host memory, with
a matrix size of [8K, 16K, 32K], the speedup on (2,4,8)
GPUs is [(1.8, 2.5, 2.2),(1.9, 2.9, 2.1), (1.9, 3.2, 3.1)]x for
cuBLASXt, [(1.8, 3.0, 3.6), (2.2, 4.1, 5.7),(—, —, —)]x for
XKBLAS, [(1.6,1.8,2.5),(1.8,2.9,4.0), ([1.9, 3.8, 6.4)] x for
PARALIA and [(1.7, 3.0, 3.6), (2.0, 3.5, 5.3), (2.2, 4.2, 7.5)] x
for our implementation. In general, 1) our implementa-
tion has similar single-GPU performance with PARALIA
but offers better scalability, and 2) similar scalability with
XKBLAS, but with a [2.4, 2.1, 1.1]x better single-GPU
performance baseline. In the more compute-bound scenario
where all data reside on GPU memory, for a matrix
size of [8K, 16K, 32K], the speedup on (2,4,8) GPUs
is [(0.6, 0.3, 0.15),(1.1, 0.8, 0.62),(1.9, 1.4, 1.3)]x for
cuBLASXt, [(1.8, 2.7, 3.8),(2.3, 4.5, 5.0), (—, —, —)]x for
XKBLAS, [(1.9,2.8,3.1),(2.1,4.0, 6.5), ([2.0, 3.9, 7.8)] x for
PARALIA and [(1.9, 3.5, 5.8), (2.0, 4.0, 7.4), (2.0, 3.9, 7.8)] x
for our implementation. In this scenario, all libraries have
similar single-GPU performance baselines since there are
no transfers, and use the same computation back-end
(cuBLASDgemm). We note that cuBLASXt faces a scalability
break on multiple GPUs in this scenario, We attribute this
to inefficient communication routing that passes through the
PCle instead of using the much faster NVLink [12], [23].
Regardless, our approach achieves higher speedups than XK-
BLAS and on par with PARALIA for the medium and large,
compute-bound problem sizes. For the small, communication-
bound problem, our approach shows the best scalability.
This is because our communication optimization, combined
with lightweight scheduling, directly targets and effectively
enhances performance and scalability.

E. Performance robustness under irregular problems

Finally, to confirm the robustness of our approach across ir-
regular GEMM problem characteristics, we extend the regular
dataset with three additional initial matrix location configura-
tions: (4,2,h), (h,h,0),(4,2,7), and two irregular problem
shapes (fat-thin and thin-fat GEMM). For fat-thin problems,
we use (Mqr = Nyar = (16384 “2=2% 40960), K'thin =
Miot ¢ [4,8,16]) and for thin-fat (Mypin = Nopin =

(5120 =121 11964), K fat = Mypin % 7,7 € [4,8, 16)).
This results in an irregular dataset of 305 data points.
Figure 12 shows the GEMM FP64 performance of
cuBLASXt, XKBLAS, PARALIA and our work on the irreg-
ular dataset, categorized based on the problem shape (square,
fat-thin, and thin-fat). cuBLASXt is the slowest implemen-
tation for all problem shapes, and its performance degrades
further on the irregular dataset due to the diverse initial
matrix placements. XKBLAS, on the other hand, performs
well on square and thin-fat problems for the various place-
ments, but for fat-thin matrices, the much larger C' matrix
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Fig. 12. Comparison of GEMM FP64 performance robustness against
the state-of-the-art, using the expanded irregular dataset, divided in three
clusters, according to the matrix shapes. Our approach outperforms all existing
libraries, regardless of problem irregularity and data placement, providing a
uniformly superior solution for multi-GPU GEMM.

creates WR-communication slowdowns. PARALIA offers bet-
ter performance for all shapes, consistent with its targeted
performance robustness, but it performs worse than XKBLAS
on square and thin-fat problems. Finally, our work achieves
better performance for all problems in the irregular dataset, on
average outperforming cuBLASXt, XKBLAS, and PARALIA
by 11.8x, 1.45x, and 1.37x (8.7x, 1.35x, 1.4x for square
problems, 17.6x, 1.6x, 1.28x for fat-thin problems and 7.31x,
1.38x, 1.42x for thin-fat problems), respectively.

V. CONCLUSION

In this work, we contribute an optimized GEMM implemen-
tation tailored for efficient execution on multi-GPU compute
nodes. Our approach focuses on the mitigation of the com-
munication and scheduling overheads, and load imbalance of
multi-GPU GEMM, using a variety of optimization techniques.
Our implementation is based on a static schedule, which is
constructed ahead of execution, whenever a routine is invoked,
and can therefore utilize the specific problem characteristics
to minimize communication, increase throughput, maximize
overlap, and load-balance communication and computation.
We employ a hierarchical problem decomposition and offer
a heuristic for tile size selection. We utilize multiple streams
to effectively overlap computation and communication, and
cache tiles to be reused, avoiding communication where pos-
sible. We optimize communication routing by considering the
availability of point-to-point links and scheduling tile transfers
accordingly to ensure that tiles arrive at their destination GPUs
at the earlier possible time. We additionally implement batched
transfers for read-only tiles and optionally enable lazy transfers
for the tiles of the output matrix.

We evaluate our approach on an NVIDIA HGX system,
which features 8 NVIDIA A100 GPUs, interconnected with
NVLink3 and NVSwitch2. Our experimental results show
the effectiveness of our optimizations in the performance
of GEMM. Our implementation outperforms state-of-the-art
libraries by 1.29x and 1.37x on average, for FP32 and FP64
GEMM respectively. Moreover, our implementation offers
high performance for irregular matrix shapes and varying
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initial data placements, significantly outperforming existing
implementations.

We conclude that contrary to the popular belief that GEMM
can easily reach the peak performance of multi-GPU compute
nodes, in practice, it is communication-bound for many prob-
lem sizes, and requires a communication-aware implementa-
tion to overcome this limitation. In the future, we aim to extend
this work to multiple multi-GPU compute nodes, combining
our intra-node implementation with distributed techniques
targeting scalability. We are working towards supporting other
input data layouts, like PBLAS, which is commonly used in
multi-node, large-scale systems.
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