
PARALiA : A Performance Aware Runtime for Auto-tuning Linear Algebra on
heterogeneous systems

PETROS ANASTASIADIS, Computing Systems Laboratory, National Technical University of Athens, Greece

NIKELA PAPADOPOULOU, Computer Science and Engineering, Chalmers University of Technology, Sweden

GEORGIOS GOUMAS, Computing Systems Laboratory, National Technical University of Athens, Greece

NECTARIOS KOZIRIS, Computing Systems Laboratory, National Technical University of Athens, Greece

DENNIS HOPPE, HLRS, University of Stuttgart, Germany

LI ZHONG, HLRS, University of Stuttgart, Germany

Dense linear algebra operations appear very frequently in high-performance computing (HPC) applications, rendering their performance
crucial to achieve optimal scalability. As many modern HPC clusters contain multi-GPU nodes, BLAS operations are frequently
offloaded on GPUs, necessitating the use of optimized libraries to ensure good performance. Unfortunately, multi-GPU systems are
accompanied by two significant optimization challenges: data transfer bottlenecks as well as problem splitting and scheduling in
multiple workers (GPUs) with distinct memories. We demonstrate that the current multi-GPU BLAS methods for tackling these
challenges target very specific problem and data characteristics, resulting in serious performance degradation for any slightly deviating
workload. Additionally, an even more critical decision is omitted because it cannot be addressed using current scheduler-based
approaches: the determination of which devices should be used for a certain routine invocation. To address these issues we propose
a model-based approach: using performance estimation to provide problem-specific autotuning during runtime. We integrate this
autotuning into an end-to-end BLAS framework named PARALiA. This framework couples autotuning with an optimized task
scheduler, leading to near-optimal data distribution and performance-aware resource utilization. We evaluate PARALiA in an HPC
testbed with 8 NVIDIA-V100 GPUs, improving the average performance of GEMM by 1.7X and energy efficiency by 2.5X over the
state-of-the-art in a large and diverse dataset and demonstrating the adaptability of our performance-aware approach to future
heterogeneous systems.

Additional Key Words and Phrases: Graphics Processing Units, BLAS Optimization, Performance Prediction

ACM Reference Format:
Petros Anastasiadis, Nikela Papadopoulou, Georgios Goumas, Nectarios Koziris, Dennis Hoppe, and Li Zhong. 2022. PARALiA : A
Performance Aware Runtime for Auto-tuning Linear Algebra on heterogeneous systems. In . ACM, New York, NY, USA, 24 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Dense linear algebra operations occur very frequently in high-performance computing (HPC) applications, making their
performance critically important for their scalability. The standardization of the Basic Linear Algebra Subprograms
(BLAS) [1] in the early days of HPC eased the development of scientific code, allowing domain experts to rely on
standardized and performance-optimized building blocks to implement more complex simulations at scale. The ample
regular parallelism of BLAS routinesmade them a good fit for GPUs, hence the existence of many BLAS libraries for GPUs,

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
Manuscript submitted to ACM

1

HTTPS://ORCID.ORG/0000-0001-7821-3610
HTTPS://ORCID.ORG/0000-0003-2141-5654
HTTPS://ORCID.ORG/0000-0001-7811-4831
https://doi.org/XXXXXXX.XXXXXXX

TACO, 2022, Fillme, NY Petros Anastasiadis, Nikela Papadopoulou, Georgios Goumas, Nectarios Koziris, Dennis Hoppe, and Li Zhong

0

50
Pe

rf.
(T

flo
ps

)
GEMM (M=N=K=4096) GEMM (M=N=K=8192) GEMM (M=N=K=16384)

All-data-CPU
Output-GPU Input-GPU

All-data-GPU
0

20

En
er

gy
 e

ff.
(G

flo
ps

/W
)

All-data-CPU
Output-GPU Input-GPU

All-data-GPU
All-data-CPU

Output-GPU Input-GPU
All-data-GPU

1.BLASX 2.XKBLAS 3.PARALiA

Fig. 1. The GEMM performance (top) and energy efficiency (bottom, using the power-delay product) of the state-of-the-art multi-GPU
BLAS libraries BLASX and XKBLAS compared with our work, PARALiA, in a multi-GPU cluster with 8 NVIDIA-V100 GPus, for three
problem sizes and four different data placements. BLASX and XKBLAS offer competitive performance for the first placement but
fail to adjust to the other three more complex ones resulting in serious performance degradation, while PARALiA adjusts well to all
scenarios and offers increased performance. PARALiA also offers higher energy efficiency through device selection with a negligible
trade-off in performance.

the most common being cuBLAS, a CUDA-based BLAS library for NVIDIA GPUs [2] which offered highly-optimized
primitive BLAS operations with the constraint that the input data must reside on GPU memory.

The success of GPUs resulted in the widespread adoption of multi-GPU nodes, with custom interconnects between
the GPUs. However, even the most GPU-friendly BLAS routines like GEMM initially struggled to exploit the compute
capabilities of these nodes, only achieving small fractions of peak performance. The addition of multiple workers to a
single problem decreased data reuse and required additional communication, including device-to-device (d2d) transfers
over links with various bandwidths, while the domain decomposition and engineering complexity for developing
multi-GPU BLAS increased considerably. This led the scientific community to the extension [3–6] or development
[7–10] of many BLAS libraries for multi-GPU systems where the input data can reside on host memory, on GPUmemory,
or a combination of both. Despite supporting all these data configurations, the optimization of these libraries focused
only on the homogeneous case meaning that: a) all data reside on the CPU memory (henceforth full offload) and b) all
GPUs were considered equal and always used regardless of their performance contribution.

While this homogeneous case leads to a programmable drop-in replacement of legacy CPU code with GPU-enabled
code, it suffers from severe performance penalties and energy inefficiencies in the general case. More specifically, it fails to
provide a solid solution in applications that rely on a series or a workflow of BLAS invocations, as is for example the case
of iterative solvers or machine learning pipelines. In these cases data that are produced by a BLAS kernel in the GPU(s)
may be consumed by subsequent BLAS kernel(s) again on the GPU(s), instead of always being updated on the CPU. Addi-
tionally, deploying each single kernel execution on all GPUs is not always efficient, since either the kernel itself may not be
scalable, or a deployment of multiple concurrent kernels would lead to amuchmore scalable or energy-efficient execution.

Figure 1 shows the performance of state-of-the-art multi-GPU libraries, executed with various data placement
configurations. BLASX and XKBLAS, the state-of-the-art multi-GPU level 3 libraries, perform well for GEMM in the full-
offload cases, but their performance drops significantly in all other data configurations, where a part of the data is stored
in GPU memory before execution. This is particularly noticeable for smaller problem sizes where the execution is more
communication-bound. Additionally, since both BLASX and XKBLAS use all available hardware (i.e. all eight GPUs in our
case) for all problem sizes, they result in low energy efficiency in the cases where they cannot achieve high performance.

In this paper we present PARALiA, an end-to-end solution for near-optimal performance-aware multi-GPU BLAS
by utilizing auto-tuning and performance modeling during runtime in order to 1) optimize communication and avoid

2

PARALiA TACO, 2022, Fillme, NY

bottlenecks deriving from data placement 2) select which devices to use and in what degree for problem-efficient
execution. Figure 1 shows that PARALiA provides robust performance regardless of data placement, resulting in superior
performance over the state of the art in the three mixed data configurations. Additionally, in the smaller problem sizes
where the GPUs are underutilized, PARALiA adapts and uses fewer devices, achieving similar performance coupled
with higher energy efficiently. Overall, this paper makes the following contributions:

(1) It introduces a portable multi-GPU communication optimization method, that encodes system characteristics
and adjusts communication routing during runtime in order to better fit to different problem layouts (sec. 3.2).

(2) It explores performance-aware workload distribution and device selection for multi-GPU BLAS (sec. 3.1), using
performance modeling with a variety of target metrics (sec. 3.3) fueled by empirical micro-benchmarks (sec. 3.4).

(3) It combines the above with a runtime tile scheduler into PARALiA, an end-to-end multi-GPU BLAS framework
offering device selection, coupled with performance-aware runtime task scheduling, which demonstrates an
average 1.7X performance and 2.5X energy efficiency improvement over state-of-the-art libraries. (sec. 4).

2 BACKGROUND

We definemulti-GPU libraries as libraries that allow input data to reside on host memory, GPUmemory, or a combination
of both and internally manage data distribution and computation on multiple devices. Most existing multi-GPU BLAS
libraries target Level-3 BLAS routines [3–10], relieving the programmer from the complex optimizations required on
multi-GPU systems, with the optimization of level-1 and level-2 BLAS still left to the programmer due to their usually
smaller impact on total application performance. In this section, we present the performance bottlenecks of multi-GPU
Level-3 BLAS, as well as the algorithms and optimizations used by the current state-of-the-art libraries to alleviate them.
We additionally discuss the limitations of current optimization approaches concerning the initial data distribution and
the interconnect heterogeneity. Finally, we discuss the absence of consideration for the resource utilization in existing
multi-GPU BLAS libraries, and the relevant efficiency and heterogeneity challenges.

The key architectural features that influence the performance, and thus, library design, in multi-GPU setups are the
distinct GPU memories and the increasingly complex underlying interconnect. Consequently, unlike single GPU setups,
where algorithmic optimizations mainly target the internals of the BLAS kernels, multi-GPU setups include multiple
devices acting as parallel workers, introducing the notions of data decomposition, reuse, communication, scheduling,
and load balancing. For simplicity, we categorize the optimization space for multi-GPU BLAS into a) data domain
decomposition, i.e. splitting the initial problem into sub-problems/tasks (henceforth sub-kernels) and their distribution,
b) communication overlap, avoidance, and routing and c) load-balancing between GPUs.

2.1 Level-3 BLAS decomposition and distribution

Level-3 BLAS routines operate on matrices, and typically the problem is decomposed into data-parallel tasks, following
some matrix decomposition scheme. On multi-GPU setups, this is necessary to exploit the multiple devices as parallel
workers, similarly to multi-core or multi-node execution [11]. Decomposition and distribution schemes are important,
as they determine the required amount of communication between workers. Early multi-GPU BLAS libraries, such as
the CUDA-based cuBLASXt [7], and its LAPACK-compatible wrapper NVBLAS [8], use a simple round-robin scheme to
distribute 2D tile-based sub-kernels to devices, resulting in unnecessary communication. State-of-the-art libraries such
as BLASX [9] and XKBLAS [10] borrow the 2D block-cyclic decomposition and distribution from distributed computing,
which achieves a good homogeneous distribution of communication on a virtual 2D-grid of workers.

3

TACO, 2022, Fillme, NY Petros Anastasiadis, Nikela Papadopoulou, Georgios Goumas, Nectarios Koziris, Dennis Hoppe, and Li Zhong

B00

B10

B01

B11

B02 B03

B12 B13

C00

C10

C01

C11

C02 C03

C12 C13

A00

A10

A01

A11

GEMM 2D Decomposition (8 GPUs):

GPU 0: A00 B00 C00 A01 B10

GPU 1: A00 B02 C02 A01 B12

GPU 2: A10 B00 C10 A21 B10

GPU 3: A10 B02 C12 A21 B12

C01B01 B11

C11B01 B11

C03B03 B13

C13B03 B13

Tiles Needed:

(K/T) x [C00,C01]
= 4

(K/T) x [C02,C03]
= 4

(K/T) x [C10,C11]
= 4

(K/T) x [C12,C13]
= 4

Sub-kernels:

M

K

N

M = N = 2K
T = M/4
DCrow = 4
DCcol = 2

A (RONLY) : Shared horizontally by DCcol GPUs
B (RONLY) : Shared vertically by DCrow GPUs
C (WR) : Not shared, reused internally

 1/2 A tiles may be fetched from other GPU memory.
3/4 B tiles may be fetched from other GPU memory.
All C tiles must be fetched from initial C location.

A30 B02 C32 A31 B12 C33B03 B13

C20

C30

C21

C31

C22 C23

C32 C33

A20

A30

A21

A31

GPU 7:
(K/T) x [C32,C33]

= 4

... ...

Fig. 2. An example of GEMM (M = N = 2K) 2D decomposition to sub-problems and data tiles (tiling size T = M/2). The 8 participating
devices are distributed in a 2D grid of (𝐷𝐶𝑟𝑜𝑤 , 𝐷𝐶𝑐𝑜𝑙) = (4, 2) to encourage horizontal and vertical device-to-device (d2d) data
movement between same row/column devices, respectively. An optimized library employing software-implemented caching of RONLY
tiles to GPUs can avoid 50% and 75% of h2d transfers for the A and B matrices, respectively, by using peer-to-peer d2d transfers.

In this work, we also employ the state-of-practice 2D block-cyclic decomposition/distribution. Figure 2 shows an
example of the 2D block-cyclic distribution used for Level-3 BLAS matrix-matrix multiplication (GEMM). The available
system devices are organized in a virtual 2D grid, which should be as square as possible - for example, a 2x2 grid for 4
devices, a 4x2 or 2x4 grid for 8 devices, a 3x3 grid for 9 devices etc.

2.2 Communication optimization

The 2D block-cyclic decomposition in GEMM depicted in Figure 2 results in a favorable communication pattern for the
read-only tiles of matrices A and B. Every GPU requires the same number of "row" tiles and "column" tiles from each of
the input matrices. This is the basis for enabling communication optimization, as communication is the main bottleneck
in multi-GPU BLAS performance on modern systems [9, 10, 12]. While different libraries have used different approaches
for improving communication performance, the optimization targets can be roughly classified into communication
overlap, avoidance, and routing.
Overlap: Overlap refers both to computation-communication overlap, as well as communication-communication
overlap, when this happens between different devices. Computation-communication overlap is a common technique
in GPU offload, both in single and multi-GPU setups and it has been extensively explored in the past [12–15]. CUDA
versions also frequently increase the overlap potential by enabling additional GPU copy-engines [16]. In this work, we
also try to maximize overlap to improve the performance of Level-3 BLAS.
GPU Data caching: In a multi-GPU setup, the different GPUs have distinct memories. Because of the problem
distribution, data that is necessary for computations need to be transferred from one device to another often. Although the
effect of those transfers is mitigated by technologies like RMA, a common approach to reduce redundant communication

4

PARALiA TACO, 2022, Fillme, NY

is data caching/buffering on the GPU memory, as it also enables data reuse between subsequent subkernels. For example,
in Figure 2, if GPU 0 does not cache data tiles, it needs to fetch 𝐶00, 𝐴00, 𝐴01 and 𝐶01 twice, resulting in 12 tile fetches
instead of 8 (50% increase in communication volume), which can worsen depending on the problem size and the tiling
size 𝑇 .

BLAS libraries initially designed for CPUs [3–6] use simple buffers in GPU memories to support some data caching,
and cuBLASXt [7] follows the same design logic. Unfortunately, simple buffering is only sufficient for internal GPU
caching, which fares well on a single GPU. Its performance degrades rapidly as the number of GPUs increases, since it
neglects the very fast connections between discrete GPU memories modern interconnects offer [9]. In this work, we
employ a GPU data caching scheme to reduce unnecessary communication and maximize data reuse.
Communication routing: Routing in a multi-GPU setup refers to selecting the fastest routes for transfers between
GPUs. In the context of Level-3 BLAS, the multiple GPUs require different data tiles, which need to be transferred, and
peer-to-peer transfers between GPUs (henceforth d2d) usually have considerably higher bandwidth than CPU-GPU
transfers (henceforth h2d/d2h). To enable routing optimizations for multi-GPU BLAS, two components are necessary: 1)
a cache consistency-like logic for the GPU buffers, to ensure that data tiles are always up to date and their Read/Write
dependencies are respected and 2) a way to distinguish the interconnect bandwidth levels in order to select the ‘closest’
fetch location when a read-only (RONLY) tile is available in multiple buffers. A solution like this is implemented in
BLASX [9], which provides a hardware abstraction of the underlying interconnect in a hierarchical representation,
designed for communication optimization in multi-GPU systems. The hierarchical representation abstracts the system
as a cache hierarchy, with the CPU RAM being the main memory and the distinct GPU memories being levels of caches.
This representation favors data reuse (last-level cache ‘hits’) and the faster GPU-GPU transfers (lower-level cache
‘hits’) to CPU-GPU transfers (cache ‘misses’), while a MESI-like protocol enables sharing RONLY blocks between GPUs.
Still, BLASX performance is hindered by continuously writing back to the CPU and re-fetching output (WR) blocks.
Moreover, recent multi-GPU clusters from NVIDIA are connected with NVLink lanes, which may offer more than one
distinguishable bandwidth ‘levels’, compared to the simple distinction between ‘h2d’ and ‘d2d’ bandwidths. XKBLAS
[10] overcomes the write-back bottleneck by performing lazy write-backs of output data. It additionally considers a
heuristic ‘ranking’ of distinguishable bandwidth levels through information from the NVIDIA driver interface, and
favoring transfers over device connections higher bandwidth. In our work, we also perform communication routing as
a communication optimization, through a different hardware abstraction and caching scheme.
The data placement hazard: While all the aforementioned optimizations target the full-offload scenario, where all
data are initially located on the CPU, BLAS multi-GPU libraries support input data on any GPU. On modern systems,
CPU-GPU (h2d/d2h) transfers are inherently much slower than peer-to-peer, GPU-GPU (d2d) transfers, therefore having
part of the input data available on GPUs should lead to a less communication-bound problem.

However, as shown in Figure 1, the performance of BLASX and XKBLAS drops significantly in all but the full-offload
scenarios and only PARALiA provides the expected increased performance. We demystify the cause for this counter-
intuitive behavior in Figure 3, which shows the communication pattern, number of transfers and average achieved
bandwidth for BLASX, XKBLAS and our proposed runtime, PARALiA. BLASX suffers from excessive costly write-backs
to the CPU due to its caching policy, although these h2d/d2h could be completely avoided in the scenario where all data
are initially on the GPUs [10]. Additionally, BLASX is bandwidth-agnostic, with transfers passing through a variety of
bandwidth levels, since its hierarchical abstraction is only capable of recognizing the difference between h2d/d2h and
d2d, and is not sufficient for modern interconnects. XKBLAS, on the other hand, avoids intermediate write-backs to
the CPU due to its lazy write-back design and provides a much more balanced communication map in the full-offload

5

TACO, 2022, Fillme, NY Petros Anastasiadis, Nikela Papadopoulou, Georgios Goumas, Nectarios Koziris, Dennis Hoppe, and Li Zhong

8
7

6
5

4
3

2
1

0
de

st
id

8 8 8 8 8 8 8 8
31 49

32 48
32 48

1 31 48
32 48

1 5 26 48
6 2 48

8 48

BLASx

8 8 8 8 8 8 8 8
15 17 7 17

14 7 7 9 19
13 8 22 2 11

12 1 5 11 27
17 1 1 37
7 4 16 2 27
5 24 1 3 23

3 3 15 4 31

XKBLAS

8 8 8 8 8 8 8 8
23 33

14 23 9 10
16 9 31

2 32 22
32 16 8

32 2 22
56

32 14 10

PARALiA

0

10

20

30

40

50

Theoretical
BW (Gb/s)

0

500

Transfers

0

20

BWmean (Gb/s)

0 1 2 3 4 5 6 7 8
srcid

8
7

6
5

4
3

2
1

0
de

st
id

8 8 8 8 8 8 8 8

14 16 7 3
11 17 12
11 19 10

14 22 17 66
4 16 16 60

3 48
11 44

BLASx

0 1 2 3 4 5 6 7 8
srcid

26 1 8 15 3 2 1
1 13 11 15 16
5 16 8 7 16 4

15 1 8 3 29
27 20 8 1
10 33 16 8 8 21 8
21 15 4

16 8 20 1

XKBLAS

0 1 2 3 4 5 6 7 8
srcid

24 7 25
24 25 7

28 21 7
56
16 56 8
16 80 16 8
36 16 8

16 8 8 8

PARALiA

0

10

20

30

40

50

Theoretical
BW (Gb/s)

0

500
Transfers

BLA
Sx

XKB
LA

S

PA
RA

LiA
0

20

BWmean (Gb/s)

Al
l-d

at
a-

CP
U(

h,
h,

h)
Al

l-d
at

a-
GP

U(
0,

1,
2)

Fig. 3. The communication pattern of BLASX, XKBLAS and PARALiA for a GEMM execution (M = N = K = 16384, T = 2048) in a
testbed with 8 NVIDIA V100 GPUs interconnected by a mixed grid of NVLink1 and NVLink2 (more in sec 4), for two data placements:
the full-offload case (all data at host memory initially) and a case where the A, B and C matrices are initially populating the memories
of GPUs 0, 1 and 2 respectively. The heatmaps visualize all communication (source GPU = x axis, destination GPU = y axis); the heat
is the theoretical bandwidth of each connection and the displayed labels in each box denote the total number of (equal byte) transfers
passing from this connection during execution. The 𝑖𝑑 = 8 is assigned to the host memory. The bar plots aggregate the total transfers
and their average bandwidth for each library. PARALiA achieves a much higher average bandwidth for both cases by utilizing the
‘hottest’ links with the highest bandwidths.

scenario, with a clear preference for the higher bandwidths. This desirable behavior does not extend to the scenario
where data initially populate GPUs 0, 1 and 2. On the contrary, the communication map becomes more dense around
these locations and creates a communication bottleneck, with a lot of extremely low-bandwidth transfers. The cause of
this meltdown lies in the core of current multi-GPU Level-3 BLAS optimization - the decomposition and distribution
method. All usual distribution methods (round-robin, block-cyclic, 2D block-cyclic etc.) target a homogeneous, balanced
scenario, where data - and consequently the communication volume - is distributed between workers as equally as
possible. In the full-offload scenario, all data must first be fetched from the host (𝑖𝑑 = 8 in the heatmaps), which in
our testbed - and most modern HPC clusters - has the same bandwidth for all h2d/d2h connections and therefore
favors a balanced distribution. On the other hand, in the second scenario, some GPUs are closer (higher d2d bandwidth)
and some are further (lower d2d bandwidth) from the data, which results in transfers passing through a variety of
connections, some of which are very slow. In our work, PARALia, we take data placement into consideration and
optimize communication, under the assumption of heterogeneity in the underlying interconnect, through an effective
abstraction of the hardware, modeling, and autotuning. As shown in Figure 3, our work achieves higher average
bandwidth compared to other techniques regardless of the initial data placement.

6

PARALiA TACO, 2022, Fillme, NY

PARALiA

DB builder

System
benchmarks

Routine
benchmarks

Scheduler

Back-end
Vendor BLAS Open-source BLAS

Preprocessor
Device

initialization Data caching Sub-kernel
invocation Synchronization

 Autotuner
LinkMap

optimization

Tiling
size (T)

Sub-kernels

Dependencies

BLAS
invocation

BLAS
resultParameters

Custom BLAS

Database

 Kernel lookup

 Transfer coeffs.

performance
modeling

Workload
selection

Optimized
routing

Environment
setup

Tile
decomposition

LinkMap representation

data location

CPUs GPUs

Interconnect

Fig. 4. An overview of the PARALiA framework and its main components.

2.3 Load balancing for heterogeneity

State-of-the-art multi-GPU libraries attempt to mitigate the aforementioned problem of imbalance between transfers, and
also adapt to potential heterogeneous computational capabilities, by using task load-balancing through work-stealing
[9, 10]. However, although work-stealing can improve load balancing, it disrupts the potential temporal locality offered
by a good initial task decomposition and distribution, as is the 2D block-cyclic decomposition. Moreover, although
work stealing may address the load imbalance coming from small performance differences between GPUs, it is not
sufficient for heterogeneous workload distribution, as we will show in Section 4.4. Finally, the work stealing mechanisms
integrated in existing approaches are performance-agnostic; they balance work between devices, without taking into
account the computational capabilities of the devices or the communication properties of the problem. This design
results in inefficient resource allocation and usage for BLAS execution, and is incompatible with future heterogeneous
systems. This monolithic design does not lead to efficient execution since it can’t adapt resource allocation to BLAS
problem characteristics and is incompatible with future heterogeneous systems.

In this work, we argue that a homogeneous distribution coupled with work-stealing is not able to effectively handle
the built-in heterogeneity of modern HPC systems for the case of BLAS, and propose a model-based approach that
adjusts the decomposition, communication, and task allocation to the characteristics of 1) each different system through
offline micro-benchmarks and 2) each different BLAS problem and data placement during runtime. Our approach steps
away from the typical homogeneous distribution coupled with work stealing, as we believe that this approach cannot
simultaneously account for the interconnect layout, problem size, and data placement, and therefore cannot effectively
handle the built-in heterogeneity of modern multi-GPU HPC systems for the case of BLAS.

3 THE PARALIA FRAMEWORK

In this section, we present the main contribution of this work; the PARALiA framework. First, we demonstrate the
high-level design, briefly describing the components involved in BLAS optimization and exposing the decision knobs
that can be autotuned.

Figure 4 shows the complete PARALiA framework that supports the efficient execution of BLAS routines in a
heterogeneous multi-GPU system. PARALiA is activated when user code invokes a BLAS routine with routine data
residing within the memory of any of the available devices. The framework consists of three main components: a
preprocessor (sec 3.5) that is responsible for preparing the framework environment for execution, a scheduler (sec 3.6)

7

TACO, 2022, Fillme, NY Petros Anastasiadis, Nikela Papadopoulou, Georgios Goumas, Nectarios Koziris, Dennis Hoppe, and Li Zhong

BLAS
invocation
Parameters

Database

 Kernel time/Watt

 Transfer models

data locations

 Autotuner

System LinkMap

For (active_devids devids) :C

estimate
problem

throughput

Location/device
configuration

LinkMap

optimize problem
routesload link weights

For (devid in active_devids) :

predict device performance

while (device performance diff > 5%) :

Adjust
active_devratio

Aggregate
multi-device
performance

best performance

Selected
ConfigurationSelected

Configuration

Optimized
Routes

Optimized
active_devratio

 active_devids

Fig. 5. An overview of the PARALiA autotuner and its prediction pipeline.

that is responsible for managing input/output data and invoking backend BLAS kernels, and an autotuner (sec 3.1)
that receives system and problem parameters from a database (sec 3.4), a hardware abstraction (LinkMap, sec 3.2) and
the routine invocation, and decides which devices to utilize for BLAS execution, the granularity (tiling size) of the
basic computational blocks and the data transfer routing. The PARALiA framework is a publicly available open-source
project.

3.1 The autotuner algorithm

The autotuner is the backbone of PARALiA’s optimization. Its purpose is to improve 1) communication throughput and
2) workload distribution for arbitrary system/problem configurations. Due to the more generic nature of this problem,
using a heuristic-based approach is bound to favor a subset of configurations, based on which the heuristics were
designed, that being either specific system characteristics (e.g. number of CPUs/GPUs, inter-connectivity) or problem
characteristics (e.g. data size, placement). For this reason, the autotuner uses a model-based approach instead, which
looks at each configuration as a different problem, by combining its system and problem characteristics at runtime.

The autotuning algorithm that commences during each routine invocation is shown in detail in Figure 5. When a
routine is invoked, the problem parameters are extracted from the routine. The autotuner loads pre-obtained transfer
coefficients from the PARALiA database and uses them to construct an abstraction of the system characteristics called
LinkMap. Then, the autotuner loops over candidate workload distributions, estimates their total performance and
selects the best one. Each workload distribution consists of a) a list of 𝑑𝑒𝑣𝑛𝑢𝑚 devices (𝑎𝑐𝑡𝑖𝑣𝑒_𝑑𝑒𝑣𝑖𝑑𝑠), which is a subset
of the total system devices, b) a list of sub-kernel ratios (𝑎𝑐𝑡𝑖𝑣𝑒_𝑑𝑒𝑣𝑟𝑎𝑡𝑖𝑜) suggested for each device and c) a transfer
routing map optimized for this specific distribution. Regarding (a) and (b), since their combined search space is very
large (𝑎𝑐𝑡𝑖𝑣𝑒_𝑑𝑒𝑣𝑟𝑎𝑡𝑖𝑜 are float values), we instead decouple them by iterating on the possible device combinations
𝑎𝑐𝑡𝑖𝑣𝑒_𝑑𝑒𝑣𝑖𝑑𝑠 (which are discrete) and selecting their 𝑎𝑐𝑡𝑖𝑣𝑒_𝑑𝑒𝑣𝑟𝑎𝑡𝑖𝑜 with a model-based method. Specifically, for each
device combination we start with equal sub-kernel ratios, and iteratively adjust the ratios based on a performance
prediction for each device (more in sec 3.3), until a 𝑎𝑐𝑡𝑖𝑣𝑒_𝑑𝑒𝑣𝑟𝑎𝑡𝑖𝑜 with similar performance per device (within 5%)
is reached. Regarding (c), the autotuner adjusts and optimizes the LinkMap to each aforementioned scenario using
its specific problem characteristics (more in sec 3.2) Finally, the best workload distribution is selected by using some
metric-related aggregator (e.g. maximum for time, sum for energy etc.) on the performance of each device obtained

8

https://github.com/p-anastas/PARALiA-Framework
https://github.com/p-anastas/PARALiA-Framework

PARALiA TACO, 2022, Fillme, NY

Table 1. LinkMap member and functions used for communication optimization.

System-wise:
𝑙𝑖𝑛𝑘𝑙𝑎𝑡 (𝑑𝑒𝑠𝑡𝑖𝑑 , 𝑠𝑟𝑐𝑖𝑑) The latency of each link.
𝑙𝑖𝑛𝑘𝑏𝑤 (𝑑𝑒𝑠𝑡𝑖𝑑 , 𝑠𝑟𝑐𝑖𝑑) The isolated bandwidth of each link.
𝑙𝑖𝑛𝑘𝑠𝑙 (𝑑𝑒𝑠𝑡𝑖𝑑 , 𝑠𝑟𝑐𝑖𝑑 , 𝑠_𝑑𝑒𝑠𝑡𝑖𝑑 , 𝑠_𝑠𝑟𝑐𝑖𝑑)) The slowdown imposed by simultaneous usage on each pair of links.
Problem-adjusted:
𝑙𝑖𝑛𝑘𝑏𝑤−𝑠ℎ𝑎𝑟𝑒𝑑 (𝑑𝑒𝑠𝑡𝑖𝑑 , 𝑠𝑟𝑐𝑖𝑑) The sustainable bandwidth of each link for a device/data configuration.
𝑙𝑖𝑛𝑘𝑟𝑜𝑢𝑡𝑒 (𝑑𝑒𝑠𝑡𝑖𝑑 , 𝑠𝑟𝑐𝑖𝑑) The underlying route all transfers passing through a link must follow.
Functions:
𝑙𝑜𝑎𝑑_𝑙𝑖𝑛𝑘_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 () Initializes 𝑙𝑖𝑛𝑘𝑏𝑤/𝑙𝑎𝑡/𝑠𝑙 from the database.
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒_𝑝𝑟𝑜𝑏𝑙𝑒𝑚_𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 () Estimates 𝑙𝑖𝑛𝑘{𝑏𝑤−𝑠ℎ𝑎𝑟𝑒𝑑 } for a device/data configuration.
𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒_𝑝𝑟𝑜𝑏𝑙𝑒𝑚_𝑟𝑜𝑢𝑡𝑒𝑠 () Re-routes communication for ’bad’ links for a for a device/data configuration.

during the estimation of (b). We note that the autotuner also selects a tiling size T for tile decomposition (as depicted in
Fig. 4), but this process is disconnected from (a), (b) and (c) and performed based on CoCoPeLiA [12] due to its small
impact in multi-GPU performance.

3.2 The LinkMap representation

Since the hardware abstractions of previous libraries target homogeneous distributions in systems with similar device
and interconnect capabilities, they are not suitable for any workload distribution. To mitigate this we assume the
most generic system in an abstraction called LinkMap, capable of representing any system with arbitrary devices and
connections between them. The LinkMap abstraction disconnects from the notion of "CPU" and "Main memory" and
treats all parts of a system similarly; any candidate data location or available computational resource is categorized as a
device and is connected via links with all other devices, which are responsible for data transfers between them. In the
LinkMap representation each device is defined by a unique id (𝑑𝑒𝑣𝑖𝑑). While not common in current systems, different
devices can share memory, in which case the transfer link time between them is always equal to zero. Additionally, this
abstraction assumes a fully-connected virtual topology; even if an actual hardware connection does not exist between a
device pair. Therefore, this creates a fully-connected graph, with where devices are the nodes and the links are the
edges: the 𝑑𝑒𝑣𝑛𝑢𝑚 nodes are connected via a 2D grid (𝑑𝑒𝑣𝑛𝑢𝑚, 𝑑𝑒𝑣𝑛𝑢𝑚) of edges/links. The LinkMap representation
is implemented in C++ as a class whose members and functions are shown in Tab. 1. It consists of five 2D matrices
𝑙𝑖𝑛𝑘{𝑙𝑎𝑡,𝑏𝑤,𝑏𝑤−𝑠ℎ𝑎𝑟𝑒𝑑,𝑟𝑜𝑢𝑡𝑒,𝑠𝑙 } that hold its values and three functions that are used during auto-tuning to update them.

The LinkMap representation by itself does not contain any insights, it just represents the most general case. Its
usefulness is its adaptability to any system and problem data placement, which happens during runtime and has
three basic phases, implemented in the LinkMap functions. First, once per program during the first routine invocation,
𝑙𝑜𝑎𝑑_𝑙𝑖𝑛𝑘_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 () loads the transfer coefficients 𝑙𝑖𝑛𝑘{𝑙𝑎𝑡,𝑏𝑤,𝑠𝑙 } from the database. This provides a basic System

LinkMap containing empirically obtained estimations for the system in general. Then during the autotuning of any
routine, 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒_𝑝𝑟𝑜𝑏𝑙𝑒𝑚_𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 () adjusts the LinkMap bandwidths (𝑙𝑖𝑛𝑘𝑏𝑤−𝑠ℎ𝑎𝑟𝑒𝑑) according to the current
device/data configuration. Specifically, it assumes that all links that connect the 𝑑𝑒𝑣𝑛𝑢𝑚 devices (𝑎𝑐𝑡𝑖𝑣𝑒_𝑑𝑒𝑣𝑖𝑑𝑠) to
the 𝑑𝑎𝑡𝑎𝑛𝑢𝑚 data locations (𝑑𝑎𝑡𝑎𝑙𝑜𝑐𝑠) perform transfers for the entire routine execution, and apply the slowdown of

9

TACO, 2022, Fillme, NY Petros Anastasiadis, Nikela Papadopoulou, Georgios Goumas, Nectarios Koziris, Dennis Hoppe, and Li Zhong

Table 2. Modeling notation used in this work.

Empirical values (from database):
𝑡𝑒𝑥𝑒𝑐 (𝑟𝑜𝑢𝑡𝑖𝑛𝑒, 𝑑𝑒𝑣𝑖𝑑 , 𝐷1[, 𝐷2[, 𝐷3]]) The execution time of 𝑟𝑜𝑢𝑡𝑖𝑛𝑒 in 𝑑𝑒𝑣𝑖𝑑 as a function of problem size.
𝑊𝑒𝑥𝑒𝑐 (𝑟𝑜𝑢𝑡𝑖𝑛𝑒, 𝑑𝑒𝑣𝑖𝑑 , 𝐷1[, 𝐷2[, 𝐷3]]) The average power (in Watt) of 𝑟𝑜𝑢𝑡𝑖𝑛𝑒 in 𝑑𝑒𝑣𝑖𝑑 during execution.
Problem parameters (from routine):
𝑑𝑖𝑚𝑠 : 𝐷1[, 𝐷2[, 𝐷3]] Problem dimensions for BLAS level-1, 2 and 3, respectively.
𝑑𝑎𝑡𝑎𝑛𝑢𝑚 The number of total matrices and vectors used by this routine.
𝑖𝑠{𝑅,𝑊 } (𝑑𝑎𝑡𝑎𝑛𝑢𝑚) A flag [0,1] denoting if a matrix/vector is input/output, respectively.
𝑑𝑎𝑡𝑎𝑙𝑜𝑐 (𝑑𝑎𝑡𝑎𝑛𝑢𝑚) The data placement of each participating matrix/vector.
𝑏𝑦𝑡𝑒𝑠 (𝑑𝑎𝑡𝑎𝑛𝑢𝑚) The size in bytes of all matrices and vectors used by this routine.
Estimated (model-based) :
𝑑𝑒𝑣𝑛𝑢𝑚 The number of devices participating in multi-device parallel execution.
𝑎𝑐𝑡𝑖𝑣𝑒_𝑑𝑒𝑣𝑖𝑑𝑠 (𝑑𝑒𝑣𝑛𝑢𝑚) A list containing the ids for each such device.
𝑎𝑐𝑡𝑖𝑣𝑒_𝑑𝑒𝑣𝑟𝑎𝑡𝑖𝑜 (𝑑𝑒𝑣𝑛𝑢𝑚) The percentage of the total sub-kernels assigned to each such device.
𝑝𝑟𝑒𝑑𝑚𝑒𝑡𝑟𝑖𝑐 (𝑑𝑒𝑣𝑖𝑑) A𝑚𝑒𝑡𝑟𝑖𝑐 prediction required for 𝑑𝑒𝑣𝑖𝑑 to complete its assigned sub-kernels.
𝑡𝑜𝑡𝑎𝑙_𝑝𝑟𝑒𝑑_𝑚𝑒𝑡𝑟𝑖𝑐 The total estimated𝑚𝑒𝑡𝑟𝑖𝑐 (e.g time, EDP) of multi-device parallel execution.

simultaneous usage (Eq. 6) to the bandwidth of each such link:

𝑙𝑖𝑛𝑘𝑏𝑤−𝑠ℎ𝑎𝑟𝑒𝑑 (𝑑𝑒𝑠𝑡𝑖𝑑 , 𝑠𝑟𝑐𝑖𝑑) = 𝑙𝑖𝑛𝑘𝑏𝑤 (𝑑𝑒𝑠𝑡𝑖𝑑 , 𝑠𝑟𝑐𝑖𝑑)×
𝑑𝑒𝑣𝑛𝑢𝑚∑︁
𝑖=0

𝑑𝑎𝑡𝑎𝑛𝑢𝑚∑︁
𝑗=0

𝑙𝑖𝑛𝑘𝑠𝑙 (𝑑𝑒𝑠𝑡𝑖𝑑 , 𝑠𝑟𝑐𝑖𝑑 , 𝑎𝑐𝑡𝑖𝑣𝑒_𝑑𝑒𝑣𝑖𝑑𝑠 (𝑖), 𝑑𝑎𝑡𝑎𝑙𝑜𝑐𝑠 (𝑗)))

The final optimization phase is to calculate something similar to the shortest paths for this graph. In our case, we want to
reroute transfers that would pass through links with low bandwidth to series of links of higher bandwidth. For example
using 3 devices, if 𝑙𝑖𝑛𝑘𝑏𝑤−𝑠ℎ𝑎𝑟𝑒𝑑 (0 → 1) = 1𝐺𝑏/𝑠 , 𝑙𝑖𝑛𝑘𝑏𝑤−𝑠ℎ𝑎𝑟𝑒𝑑 (0 → 2) = 3𝐺𝑏/𝑠 and 𝑙𝑖𝑛𝑘𝑏𝑤−𝑠ℎ𝑎𝑟𝑒𝑑 (2 → 1) = 4𝐺𝑏/𝑠 ,
the shortest transfer route for 0 → 1 would be optimized to 0 → 2 → 1, since it would be faster to transfer data
from device 0 to device 1 through device 2, instead of using their direct link. To avoid very long routes the re-routing
algorithm (𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒_𝑝𝑟𝑜𝑏𝑙𝑒𝑚_𝑟𝑜𝑢𝑡𝑒𝑠 ()) uses amax_hops argument that limits the intermediate data locations (currently
supported 𝑚𝑎𝑥_ℎ𝑜𝑝𝑠 = {1, 2}), and we use 𝑚𝑎𝑥_ℎ𝑜𝑝𝑠 = 1 in our evaluation. Performing these intermediate ‘hops’
during runtime has a very low overhead since PARALiA already holds tile buffers in all devices. Re-routing significantly
improves performance since 1) bandwidth is increased for the otherwise slowest transfers, which are an important
bottleneck and 2) in level-3 BLAS, transferring a read-only data chunk with additional ‘hops’ (like device 2 in the
example) also stores it to these devices for potential use.

3.3 Offload performance estimation

As explained in Sec. 3.1, the ratio adjustment and the total performance aggregation in the autotuner use an estimation
of the offload performance of each device (henceforth 𝑝𝑟𝑒𝑑𝑚𝑒𝑡𝑟𝑖𝑐 (𝑑𝑒𝑣𝑖𝑑)). Performance prediction in multi-GPU setups
is considerably more complex than on a single GPU, as scheduling on multiple devices involves runtime decisions
regarding data caching and simultaneous resource utilization that are not static or known beforehand. For this reason,
we use a performance upper bound based on the full-overlap model[15], instead of using more advanced overlap models
[12, 14, 15]. We note that, for simplicity, all equations presented below use time as the performance𝑚𝑒𝑡𝑟𝑖𝑐 , but PARALiA
supports more performance metrics that are later explained in detail. Table 2 summarizes the modeling notation used in
this work.

10

PARALiA TACO, 2022, Fillme, NY

First, we combine the full-overlap upper bound [15] with the PARALiA database to get a routine-specific, full-overlap
prediction for each device’s total performance:

𝑝𝑟𝑒𝑑_𝑡𝑏𝑎𝑠𝑒 (𝑑𝑒𝑣𝑖𝑑) =𝑚𝑎𝑥 (𝑡𝑒𝑥𝑒𝑐 (𝑑𝑒𝑣𝑖𝑑 , 𝑑𝑖𝑚𝑠), 𝑡ℎ2𝑑 (𝑑𝑒𝑣𝑖𝑑 ,
𝑖𝑠𝑅∑︁
𝑖

𝑏𝑦𝑡𝑒𝑠 (𝑖)), 𝑡𝑑2ℎ (𝑑𝑒𝑣𝑖𝑑 ,
𝑖𝑠𝑊∑︁
𝑗

𝑏𝑦𝑡𝑒𝑠 (𝑗))) (1)

where h2d stands for host-to-device and d2h for device-to-host transfers, and
∑𝑖𝑠{𝑅,𝑊 }

{𝑖, 𝑗 } are the subsets of the 𝑑𝑎𝑡𝑎𝑛𝑢𝑚
matrices/vectors that are problem inputs and outputs, respectively. To adjust the model for multi-device offload, we
need to replace ‘h2d’ and ‘d2h’ time with the transfer times of all links connecting 𝑑𝑎𝑡𝑎𝑙𝑜𝑐𝑠 to each device. To do this,
first, we calculate the transfer time for each link (𝑡𝑙𝑖𝑛𝑘) as a function of transferred 𝑏𝑦𝑡𝑒𝑠 with:

𝑡𝑙𝑖𝑛𝑘 (𝑑𝑒𝑠𝑡𝑖𝑑 , 𝑠𝑟𝑐𝑖𝑑 , 𝑏𝑦𝑡𝑒𝑠) = 𝑙𝑖𝑛𝑘𝑙𝑎𝑡 (𝑑𝑒𝑣𝑖𝑑 , 𝑠𝑟𝑐𝑖𝑑) +
𝑏𝑦𝑡𝑒𝑠

𝑙𝑖𝑛𝑘𝑏𝑤−𝑠ℎ𝑎𝑟𝑒𝑑 (𝑑𝑒𝑠𝑡𝑖𝑑 , 𝑠𝑟𝑐𝑖𝑑)
(2)

by combining each link’s latency and bandwidth using the well-accepted latency/bandwidth model [12, 14, 15, 17–19].
Then, we assume the best-case scenario, where all input matrices/vectors are distributed equally between the 𝑑𝑒𝑣𝑛𝑢𝑚
devices by combining eq. 1 with eq. 2 to generalize for any initial data placement:

𝑝𝑟𝑒𝑑_𝑡𝑜𝑣𝑒𝑟 (...) =𝑚𝑎𝑥 (𝑡𝑒𝑥𝑒𝑐 (...),
𝑖𝑠𝑅∑︁
𝑖

𝑡𝑙𝑖𝑛𝑘 (𝑑𝑒𝑣𝑖𝑑 , 𝑑𝑎𝑡𝑎𝑙𝑜𝑐𝑠 (𝑖),
𝑏𝑦𝑡𝑒𝑠 (𝑖)
𝑑𝑒𝑣𝑛𝑢𝑚

),
𝑖𝑠𝑊∑︁
𝑗=0

𝑡𝑙𝑖𝑛𝑘 (𝑑𝑎𝑡𝑎𝑙𝑜𝑐𝑠 (𝑗), 𝑑𝑒𝑣𝑖𝑑 ,
𝑏𝑦𝑡𝑒𝑠 (𝑗)
𝑑𝑒𝑣𝑛𝑢𝑚

)) (3)

Equation 3 provides a more accurate prediction for the full-overlap performance of a routine, if multi-GPU execution

does not involve additional transfers/data sharing between devices. This assumption works for level-1 and level-2 BLAS,
but in level-3 BLAS decomposition each tile is reused by many sub-kernels and therefore transferred to multiple devices
throughout a routine’s lifetime. Since PARALiA uses a 2D block-cyclic decomposition (𝐷𝐶𝑟𝑜𝑤 , 𝐷𝐶𝑐𝑜𝑙) for level-3 BLAS,
we consider this baseline scenario of 1) exchanging equal portions of RONLY bytes between all decomposition rows and
columns and 2) no output data sharing. We estimate the proportional increase in transfer volume for each device as:

𝑒𝑥𝑡𝑟𝑎_𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟_𝑏𝑦𝑡𝑒𝑠 =
(𝐷𝐶𝑟𝑜𝑤 − 1) + (𝐷𝐶𝑐𝑜𝑙 − 1)

𝑅𝑂𝑁𝐿𝑌𝑛𝑢𝑚
· 𝑅𝑂𝑁𝐿𝑌_𝑠𝑢𝑚_𝑏𝑦𝑡𝑒𝑠

Where 𝑅𝑂𝑁𝐿𝑌𝑛𝑢𝑚 is the number of matrix/vectors with 𝑖𝑠𝑅 = 1 and 𝑖𝑠𝑊 = 0, and 𝑅𝑂𝑁𝐿𝑌_𝑠𝑢𝑚_𝑏𝑦𝑡𝑒𝑠 is the sum of
their corresponding 𝑏𝑦𝑡𝑒𝑠 . This represents a lower bound of the added bytes due to multi-GPU BLAS3 data sharing for

each device. We assume these bytes are equally distributed between devices, and use the average bandwidth of all links
to estimate the additional transfer time:

𝑡𝑒𝑥𝑡𝑟𝑎 (𝑑𝑒𝑣𝑖𝑑) = 𝑒𝑥𝑡𝑟𝑎_𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟_𝑏𝑦𝑡𝑒𝑠 ·
𝑑𝑒𝑣𝑛𝑢𝑚∑𝑑𝑒𝑣𝑛𝑢𝑚

𝑖𝑑𝑥=0 𝑙𝑖𝑛𝑘𝑏𝑤−𝑠ℎ𝑎𝑟𝑒𝑑 [𝑑𝑒𝑣𝑖𝑑] [𝑖𝑑𝑥]
(4)

in which the extra communication in bytes for each device is multiplied by the inverse of its average receive bandwidth,
which serves as an average estimate for the expected bandwidth of these transfers. We finally construct the full-overlap
model used for the estimated performance of each GPU in a multi-GPU environment by adding the extra transfer time of
Eq. 4 to Eq. 3:

𝑝𝑟𝑒𝑑𝑡 (𝑑𝑒𝑣𝑖𝑑 , ...) =𝑚𝑎𝑥 (𝑡𝑒𝑥𝑒𝑐 (...), 𝑡𝑒𝑥𝑡𝑟𝑎 (𝑑𝑒𝑣𝑖𝑑) +
𝑖𝑠𝑅∑︁
𝑖

𝑡𝑙𝑖𝑛𝑘 (...),
𝑖𝑠𝑊∑︁
𝑗

𝑡𝑙𝑖𝑛𝑘 (...)) (5)

Performance metrics: All the aforementioned models return a time prediction for the execution on a single GPU.
We use the maximum predicted execution time, 𝑡𝑜𝑡𝑎𝑙_𝑝𝑟𝑒𝑑_𝑡 = 𝑚𝑎𝑥 (𝑝𝑟𝑒𝑑𝑡 (𝑑𝑒𝑣𝑖𝑑)) to evaluate different candidate
workload distributions. PARALiA also supports utilization/energy-centric metrics, based on the total power consumption

11

TACO, 2022, Fillme, NY Petros Anastasiadis, Nikela Papadopoulou, Georgios Goumas, Nectarios Koziris, Dennis Hoppe, and Li Zhong

of all GPUs in the multi-GPU setup, 𝑡𝑜𝑡𝑎𝑙_𝑝𝑟𝑒𝑑_𝑊 , which we combine with 𝑡𝑜𝑡𝑎𝑙_𝑝𝑟𝑒𝑑_𝑡 to further enhance the
workload selection process. In this work, we use 1) performance (𝐹𝐿𝑂𝑃𝑠 = 𝐹𝐿𝑂𝑃

𝑡𝑖𝑚𝑒), 2) an inverse energy-delay product
(𝐸𝐷𝑃𝑖 = 𝐹𝐿𝑂𝑃𝑠2/𝑊) and 3) an inverse power-delay product (𝑃𝐷𝑃𝑖 = 𝐹𝐿𝑂𝑃𝑠/𝑊) for workload distribution (PARALiA
select({𝐹𝐿𝑂𝑃𝑠, 𝐸𝐷𝑃𝑖 , 𝑃𝐷𝑃𝑖 }, respectively). As evaluation metrics we use performance (𝐹𝐿𝑂𝑃𝑠 , in 𝐺𝐹𝐿𝑂𝑃𝑠 or 𝑇𝐹𝐿𝑂𝑃𝑠)
and energy efficiency (𝑃𝐷𝑃𝑖 , in 𝐺𝐹𝐿𝑂𝑃𝑠/𝑊). To support rapid experimentation with additional metrics, we have
simplified the addition and benchmarking of new metrics, requiring the modification of 3-4 lines of code only.

3.4 Database

The PARALiA database stores the empirical measurements required to construct PARALiA’s system abstraction LinkMap,
and to estimate performance in the autotuner. These measurements include transfer latencies and bandwidths, which
are collected only once per system, and execution time/Watt measurements, collected for each routine. The database is
automatically built by PARALiA at installation time, with a set of automated micro-benchmarks (we denote this process
as the DB Builder), for all available devices and all connections between them.
Database Builder: The DB builder is an extension of the relevant component in CoCoPeLia [12], which performs
single-device BLAS routine benchmarks for all system devices, and extends the set of system benchmarks to model
transfers according to the requirements of the LinkMap representation. In PARALiA’s DB builder, we opt for ease
of use, robustness and short benchmarking time. For ease of use, PARALiA provides a fully automated process for
micro-benchmarking and for producing the empirical transfer models. Additionally, PARALiA is easily extensible to
accommodate new backend BLAS library options, providing micro-benchmark template scripts, which can be easily
modified with new routine invocations and any additional parameters. For robustness, for each benchmarked value, we
repeat measurements until the 95% confidence interval of the mean falls within 5% of the reported mean value (taking at
least 10 measurements to obtain these means). Finally, for short benchmarking times, we try to strike a balance between
the number of measurements required for robustness, and their overall execution time. The DB builder benchmarks
the computation time of the different backend BLAS routines. The minimum problem dimensions and steps are static
and predefined for all benchmarks, while the maximum dimensions are calculated based on the available memory of
the target device. The results of the DB builder are stored as a database and made available to the framework for all
subsequent calls in the system.
Kernel lookup: The offload performance models used in the autotuner require an estimate for the routine execution
time and average Watts per device. Using the same technique as in CoCoPeLia [12], we only collect measurements
for the time/power of fine-grained chunks of specific, small tiling sizes, namely {𝑡,𝑊 }𝑒𝑥𝑒𝑐 (𝑟𝑜𝑢𝑡𝑖𝑛𝑒, 𝑑𝑒𝑣𝑖𝑑 ,𝑇 [,𝑇 [,𝑇]]),
for which we then use value lookup in the database. The average GPU Watt consumption is obtained by sampling
Watt values at regular intervals with the CUDA nvml-driver during each routine benchmark and averaging these.
Micro-benchmarks are performed per routine and per device (𝑑𝑒𝑣𝑛𝑢𝑚 × 𝑟𝑜𝑢𝑡𝑖𝑛𝑒𝑛𝑢𝑚 times) and use separate BLAS
backends depending on the target 𝑑𝑒𝑣𝑖𝑑 . Devices with 0 ≤ 𝑑𝑒𝑣𝑖𝑑 < 𝑐𝑢𝑑𝑎_𝑑𝑒𝑣_𝑛𝑢𝑚 are reserved for available CUDA
devices and devices with 𝑑𝑒𝑣_𝑖𝑑 >= 𝑐𝑢𝑑𝑎_𝑑𝑒𝑣_𝑛𝑢𝑚 are reserved for available CPUs (usually one). The value lookup
micro-benchmarks use cuBLAS for NVIDIA GPUs and OpenBLAS for CPUs, but are easily extensible with minimal
adjustments to other 𝑑𝑒𝑣𝑖𝑑 ranges (e.g. for AMD devices) or for different BLAS implementations (e.g. a custom GPU
implementation instead of cuBLAS) that follow the BLAS standard.
Transfer coefficients: To obtain 𝑙𝑖𝑛𝑘{𝑙𝑎𝑡,𝑏𝑤} , we follow the most widely used semi-empirical approach; we measure
a set of transfer times and use them to fit the coefficients of basic linear models for transfer time. We obtain 𝑙𝑖𝑛𝑘𝑙𝑎𝑡
empirically as the average latency of multiple single-byte transfers. For 𝑙𝑖𝑛𝑘𝑏𝑤 , we run benchmarks for square transfers

12

PARALiA TACO, 2022, Fillme, NY

with 𝑑𝑡𝑦𝑝𝑒 = 𝑑𝑜𝑢𝑏𝑙𝑒 , for 𝐷1 = 𝐷2 = 256
𝑠𝑡𝑒𝑝𝑎𝑑=256−−−−−−−−−→

√︁
𝑚𝑎𝑥_𝑑𝑒𝑣𝑖𝑐𝑒_𝑚𝑒𝑚𝑜𝑟𝑦/2, and use least square regressions on

the obtained samples in the manner of [20]. Then, we estimate the slowdown 𝑙𝑖𝑛𝑘𝑠𝑙 for simultaneous link usage (e.g.
transfer overlap for any two links), assuming it imposes a constant throughput slowdown and does not affect latency.
This slowdown is calculated with a single micro-benchmark for each link; first, for the link of interest, a large transfer
(𝐷1 = 𝐷2 =

√︁
𝑚𝑎𝑥_𝑑𝑒𝑣𝑖𝑐𝑒_𝑚𝑒𝑚𝑜𝑟𝑦/2) is tested isolated (𝑡𝑙𝑖𝑛𝑘1), and then, it is tested overlapped (𝑡𝑙𝑖𝑛𝑘1−𝑙𝑖𝑛𝑘2𝑜𝑣𝑒𝑟) with

multiple similar transfers on the other link, resulting in the slowdown:

𝑠𝑙𝑙𝑖𝑛𝑘1−𝑙𝑖𝑛𝑘2 = (𝑡𝑙𝑖𝑛𝑘1−𝑙𝑖𝑛𝑘2𝑜𝑣𝑒𝑟)/𝑡𝑙𝑖𝑛𝑘1 (6)

Since the method of obtaining the 𝑠𝑙 is empirical, we assume a maximum slowdown of 𝑠𝑙𝑙𝑖𝑛𝑘1−𝑙𝑖𝑛𝑘2 = 2.0 (i.e., the
effective bandwidth is halved), to avoid empirical errors spilling into the models. For all transfer experiments we use
the PARALiA wrapped functions for transfers, which currently use the cudaMemcpy2DAsync routine in their back-end
with pinned host memory, as required by these asynchronous calls.

3.5 Preprocessor

The PARALiA preprocessor is responsible for the framework initialization and the transformation of problem data for
BLAS execution in a multi-GPU system, which is broken down into the three basic operations described next.
Environment setup: This operation is performed when a BLAS routine is invoked for the first time or with a new set
of parameters. It allocates buffers, initializes data structures, and performs backend-specific actions, like creating CUDA
streams and events, to be used by the scheduler.
Tile decomposition: The bulk of preprocessing in BLAS libraries involves decomposing the problem data into smaller
chunks, usually referred to as tiles. As most similar multi-GPU libraries [6, 7, 9, 10], in PARALiA we decompose vectors to
1D tiles andmatrices to 2D square tiles, using a tiling size𝑇 provided by the autotuner. After data decomposition into tiles,
PARALiA identifies all sub-kernels deriving from this decomposition, generating the relevant data/task dependencies.
Device initialization: This operation initializes the devices that will participate in BLAS execution (𝑎𝑐𝑡𝑖𝑣𝑒_𝑑𝑒𝑣𝑖𝑑𝑠) and
distributes sub-kernels to them, proportionally to their assigned problem ratios (𝑎𝑐𝑡𝑖𝑣𝑒_𝑑𝑒𝑣𝑟𝑎𝑡𝑖𝑜). PARALiA supports
multiple sub-kernel distribution patterns (Sequential, Round-Robin, 1D-cyclic and 2D-cyclic) and by default uses
Round-robin for BLAS 1 & 2 and 2D-cyclic for BLAS3. Unlike scheduler-centric multi-GPU libraries [9, 10] that rely on
dynamic load-balancing, PARALiA follows a static approach since load-balancing is based on effective performance
estimation performed before scheduling.

3.6 Scheduler

The PARALiA scheduler manages data caching in distinct device memories, and data transfers between memories,
invokes all sub-kernels on their assigned devices, and synchronizes their execution and results, as analyzed below.
Data caching: For this operation, PARALiA uses a Software_buffer C++ class, similar to BLASX and XKBLAS,
which represents a buffer in each device with a distinct memory, and can store 1D and 2D tiles. Each Software_buffer

holds a number of blocks depending on the problem size and per-device memory limitations, and employs a simple
block-sequential write-back policy to swap tiles during sub-kernel execution, using a MESI-like protocol similar to
BLASX [9]. This Software_buffer in each device is initialized the first time a program calls a PARALiA BLAS routine,
and is updated/extended in subsequent calls to match their device and size requirements.
Sub-kernel invocation: The scheduler spawns 𝑎𝑐𝑡𝑖𝑣𝑒_𝑑𝑒𝑣𝑛𝑢𝑚 POSIX threads, that are responsible for invoking
sub-kernels in their corresponding devices.

13

TACO, 2022, Fillme, NY Petros Anastasiadis, Nikela Papadopoulou, Georgios Goumas, Nectarios Koziris, Dennis Hoppe, and Li Zhong

Table 3. The Vulcan CLX-AI testbed system characteristics.

Vulcan CLX-AI CPU GPU
Computation: 4 X Intel Xeon Gold 8 X NVIDIA Tesla V100

6240 CPU FP peak 14 TFlop/s
18 cores @ 2.60GHz DP peak 7 TFlop/s

Memory: 768GB DDR4 32 GB HBM2
760 GB/s

Interconnect: PCIe Gen3 x16 NVlink 1.0/2.0
OS: Rocky Linux release 8.7 CUDA Driver -
Kernel: 4.18.0-425.3.1.el8.x86_64 510.108.03
Compiler: g++ 11.2.0 CUDA 11.6
Opt. flags: -O3 -O3, -arch=sm_75

Fig. 6. The System Linkmap for the CLX-AI interconnect.

0 1 2 3 4 5 6 7 8
srcid

8
7

6
5

4
3

2
1

0
de

st
id

linkbw

0

10

20

30

40

50

Empirical
BW (Gb/s)

After a sub-kernel is invoked, it issues three sub-tasks: a) the requests for all its input tile dependencies (e.g. fetching
tiles if they are not available in its device memory), b) the sub-kernel computations to be performed after dependencies
are met and c) potential data write-backs to the initial memory location for any tile it modified. The optimization of
sub-kernel invocation order is important for multi-GPU BLAS scheduling, since it affects both task parallelism and
the communication and data reuse pattern [9, 10]. We leave the sub-kernel order problem for future work because
PARALiA focuses on model-assisted communication and workload distribution, not dynamic scheduling techniques.
Synchronization: The sub-tasks of each sub-kernel (i.e. fetch data, compute, writeback) are executed asynchronously
and overlapped with sub-tasks from other sub-kernels (software pipelining) and on other devices (multi-GPU) using
CUDA events to enforce data dependencies and CUDA streams to enable overlap. After all sub-kernels are invoked, the
scheduler synchronizes all sub-tasks and returns the result and control to the user upon completion.

4 EVALUATION

In this section, we evaluate the performance of PARALiA and compare it with state-of-the-art libraries. First, we
introduce the testbed and the evaluation dataset we use for our experiments and illustrate its corresponding LinkMap

representation. Then, we provide a full evaluation of PARALiA’s DGEMM performance and compare it against cuBLASXt
[7], BLASX [9] and XKBLAS [10], using both performance (Tflops) and energy efficiency (Gflops/W) metrics. We
compare three versions of PARALiA, with each version using a different approach for workload distribution, based
on the estimated routine performance, inverse energy-delay (𝐸𝐷𝑃𝑖) or inverse power-delay(𝑃𝐷𝑃𝑖) as described in 3.3.
Finally, we showcase that PARALiA also adapts better than previous approaches to a heterogeneous system, which we
emulate using a different predefined per-device load in our testbed.

4.1 Experimental setup

For the performance evaluation we use a single testbed: the "clx-ai" nodes of HLRS’ HPC cluster Vulcan [21]. System
details are presented in Table 3, along with the interconnect bandwidths stored in the LinkMap for the 9 devices (8
GPUs + CPU). The interconnect utilizes a mix of NVlink-1 (24 GB/s) and NVlink-2 (48 GB/s) for inter-GPU connectivity
and PCiE (12 GB/s) for all CPU-GPU communication. In addition, we note that CPUs share PCIe bandwidth in sets
of two (e.g. GPU 0-1, 2-3 etc). For time measurements we use wrapped timers based on clock_gettime, with device
synchronization (cudaDevice Synchronize()) also included; both timer and synchronization overhead were less than
1% for all benchmarks. We perform 20 executions for large benchmarks and 100 for small ones, after 10 warm-up runs,

14

PARALiA TACO, 2022, Fillme, NY

and we report the median time/performance of these runs. The allocation time needed for CPU/GPU buffers is not
modeled or included in the total time, and all matrices/vectors are initialized with random values before execution. We
use pinned host memory to enable asynchronous CUDA calls and the caches/buffers are flushed between runs. The
above configuration is consistent for all our experiments and all state-of-the-art libraries we include in this work.

4.2 Evaluation Dataset

4.2.1 Routine selection. While the PARALiA framework is designed to support all BLAS levels, level-1 and level-2 are
rarely offloaded to GPUs/accelerators as standalone calls - they usually follow or precede level-3 BLAS invocations
which can fully utilize the extreme computational capabilities of GPUs. We therefore only implement a subset of BLAS
routines (axpy, dot, gemv) as proof-of-work with the PARALiA’s wrappers and do not include any level-1 or level-2
BLAS routines in our evaluation. On the other hand, the usual evaluation trend for multi-GPU level-3 BLAS publications
is to report the performance of most or all level-3 BLAS routines they implement, for multiple supported datatypes.
Due to the very high resource cost of benchmarking multi-GPU level-3 BLAS, this usually leads to small datasets with
specific characteristics, which as we mentioned in sec. 1, is the main problem of previous approaches. Due to this,
their evaluations explore only a fraction of potential problems, resulting in potential underlying bottlenecks never
brought to light. We choose a different benchmarking approach for PARALiA; we select a large, diverse dataset and
focus solely on double-precision floating-point matrix-matrix multiplication (dgemm) for performance evaluation. We
make this choice for three reasons. First, GEMM is by far the most common level-3 BLAS routine; all other level-3 BLAS
kernels are either datatype-specialized GEMM implementations or internally perform mostly GEMM computations
(68-93% according to BLASX [9], which increases further with problem size), and therefore follow similar performance
trends. Second, as the most generic level-3 BLAS routine, GEMM, depending on its input/output size and shape, results
in a plethora of different arithmetic intensities, which can be used to expose bottlenecks for transfer-, memory- and
compute-bound problems with a single implementation. Third, because our total resources are limited, we prefer to
cover a diverse dataset to expose hidden bottlenecks, instead of presenting similar results for multiple routines.

4.2.2 Dataset characteristics. Since most state-of-the-art multi-GPU level-3 BLAS libraries use the same cuBLAS
single-GPU routines at the backend, they have similar performance peaks when communication is not a bottleneck.
We therefore try to include a good percentage of problems that potentially have performance differences due to
communication/scheduling. The main characteristics of GEMM that change its communication/computation ratio are
the problem size and problem shape, and additionally, for multi-GPU setups, the initial residing memory for each of

the input/output matrices. We consequently explore 21 square problem sizes (𝑀𝑠𝑞 = 𝑁𝑠𝑞 = 𝐾𝑠𝑞 = (2
step=1
−−−−−→ 22) · 210),

21 fat-by-thin problems (𝑀𝑓 𝑎𝑡 = 𝑁𝑓 𝑎𝑡 = (8
step=4
−−−−−→ 32) · 210, 𝐾𝑡ℎ𝑖𝑛 =

𝑀𝑓 𝑎𝑡

𝑟 , 𝑟 ∈ [2, 8, 32]) and 21 thin-by-fat problems

(𝐾𝑓 𝑎𝑡 = (12
step=4
−−−−−→ 36) · 210, 𝑀𝑡ℎ𝑖𝑛 = 𝑁𝑡ℎ𝑖𝑛 =

𝐾𝑓 𝑎𝑡

𝑟 , 𝑟 ∈ [2, 8, 32]) for 10 location combinations (more in fig. 7) for a
total of 630 problems. We assume each matrix initially exists in a single location and is not pre-distributed to multiple
devices, to maintain compatibility with the BLAS API standard and to be able to compare performance with existing
multi-GPU BLAS libraries, which also follow the standard. For each such problem, we measure the execution time 𝑡 of 1)
cuBLASXt, 2) BLASX, 3) XKBLAS and 4) four PARALiA variants (PARALiA comm_opt, PARALiA select(PERF), PARALiA
select(𝐸𝐷𝑃𝑖), PARALiA select(𝑃𝐷𝑃𝑖)). PARALiA comm_opt only optimizes communication without employing device
selection, while the other three versions also select the best device configuration for optimizing the relevant metric. We
exclude other libraries like SuperMatrix [3] and PARSEC [6] that were designed taking older GPU architectures into
account, as they are outperformed by both BLASX and XKBLAS.

15

TACO, 2022, Fillme, NY Petros Anastasiadis, Nikela Papadopoulou, Georgios Goumas, Nectarios Koziris, Dennis Hoppe, and Li Zhong

0

20

40

Square (M = N = K) Square / all locations

0

20

40

Pe
rfo

rm
an

ce
 (T

flo
ps

) Fat-thin (M = N > K) Thin-fat / all locations

All-data-CPU(h,h,h)
Input-GPU(0,0,h)

Input-GPU(2,4,h)

Output-GPU(h,h,0)
Mixed(h,0,5)

All-data-GPU(0,0,0)

All-data-GPU(0,1,2)

All-data-GPU(0,3,6)

All-data-GPU(4,2,5)

All-data-GPU(1,6,7)
0

20

40

Thin-fat (M = N < K) Fat-thin / all locations

0.cuBLASXt 1.BLASX 2.XKBLAS 3.PARALiA comm_opt 4.PARALiA select(EDPi)

Fig. 7. Performance of dgemm with cuBLASXT, BLASX, XKBLAS, and two variants of PARALiA (one always utilizing all GPUs and one
selecting the workload distribution to maximize the inverse energy-delay product - 𝐸𝐷𝑃𝑖), on the dataset described in subsection 4.2.
Each row corresponds to a different data shape 𝑀,𝑁,𝐾 and each boxplot group corresponds to a different data location, with
𝑔𝑒𝑚𝑚𝑙𝑜𝑐 = (𝐴𝑙𝑜𝑐 , 𝐵𝑙𝑜𝑐 ,𝐶𝑙𝑜𝑐) , where loc = h corresponds to data on host and loc = 𝑑𝑒𝑣𝑖𝑑 to the corresponding device’s memory. The
right subfigure aggregates results for each problem shape.

4.3 Comparison with state-of-the-art

4.3.1 Performance. Figure 7 shows the evaluation results for the entire dataset. As previous work also outlines,
cuBLASXt has very low performance due to its static round-robin decomposition as well as the absence of a data caching
and reuse logic. On the other hand, BLASX provides good performance for the full-offload (h,h,h) scenario for initial data
locations, which drops considerably in all other location combinations. This pattern holds for all three data shapes, and
is more evident in fat-thin and thin-fat problems because they are more communication-bound than the square shape,
for which GEMM has the highest arithmetic intensity. XKBLAS follows a similar pattern, with only one distinguishable
characteristic; it has the highest full-offload (h,h,h) performance of all libraries, but the performance degradation
in all other location combinations is much larger than BLASX, resulting in inferior performance. We attribute this
to the extra heuristics XKBLAS uses for limiting writebacks and task scheduling and its very lightweight scheduler,
which are designed around the optimization of the full-offload scenario. While we are working on overcoming both
those issues, we also believe that this would not occur in modern systems that are not as heavily bound by h2d PCIe
transfers. The simpler BLASX is better in this case, since writing back to the host and then re-fetching to the GPUs with
h2d/d2h transfers (PCIe bandwidth = 12 GB/s), is better than performing d2d between distant devices which results
in extremely slow transfers through PCIe, bridges and potentially NUMA connections (bandwidth < 6 GB/s), which
cannot be overlapped. Nevertheless, this is a very interesting observation - the dethroning of BLASX by XKBLAS as the
state-of-the-art for multi-GPU setups was based only on the full-offload comparison. Looking behind the curtain, BLASX
does provide more robust multi-GPU performance in the general case - which further stresses the importance of a more
diverse dataset for a fair performance evaluation. Both PARALiA implementations offer a 1.8-2X mean performance

16

PARALiA TACO, 2022, Fillme, NY

0

10

20

Square (M = N = K) Square / all locations

0

10

20

PD
P i

 (G
flo

ps
/W

)

Fat-thin (M = N > K) Thin-fat / all locations

All-data-CPU(h,h,h)
Input-GPU(0,0,h)

Input-GPU(2,4,h)

Output-GPU(h,h,0)
Mixed(h,0,5)

All-data-GPU(0,0,0)

All-data-GPU(0,1,2)

All-data-GPU(0,3,6)

All-data-GPU(4,2,5)

All-data-GPU(1,6,7)
0

10

20

Thin-fat (M = N < K) Fat-thin / all locations

0.cuBLASXt 1.BLASX 2.XKBLAS 3.PARALiA comm_opt 4.PARALiA select(EDPi)

Fig. 8. Energy efficiency of dgemm (Gflops/W) for all problem configurations presented in Figure 7. cuBLASXt, BLASX, XKBLAS
and PARALiA comm_opt have 𝑃𝐷𝑃𝑖 s relative to their performance (since they all utilize all 8 system GPUs), resulting in a much
better 𝑃𝐷𝑃𝑖 for PARALiA due to its higher performance. On the other hand, PARALiA select(𝐸𝐷𝑃𝑖) also takes into account the
energy-performance relation when considering how many devices to use and therefore has a much better 𝑃𝐷𝑃𝑖 with only imposing a
minor performance difference.

improvement over BLASX and XKBLAS and exhibit superior performance for all location and shape configurations,
except full-overlap, where our choice to not use sub-kernel order selection heuristics gives XKBLAS a 5-10% performance
advantage. The performance gain versus BLASX and XKBLAS varies for all other configurations, with the two PARALiA
implementations displaying almost similar performance and ultimately approaching peak performance (e.g. being
compute-bound) by better utilizing the faster NVLink connections due to the optimized LinkMap. In summary, Figure 7
illustrates that PARALiA outperforms previous approaches in terms of performance (details in sec. 4.3.3) in a complete,
diverge dataset, containing various transfer- and compute- bound cases, due to its better communication optimization
scheme.

4.3.2 Energy efficiency. Figure 8 presents results on energy efficiency for our dataset using the inverse power-delay
product (𝑃𝐷𝑃𝑖 in Gflops/W). Both PARALiA implementations have superior 𝑃𝐷𝑃𝑖 than the state-of-the-art, which for
PARALiA comm_opt versus cuBLASXt, BLASX, XKBLAS is due to their performance difference, since they all utilize
all 8 available GPUs. On the other hand, PARALiA select (𝐸𝐷𝑃𝑖) has the best 𝑃𝐷𝑃𝑖 for all configurations, providing
an 8% higher average 𝑃𝐷𝑃𝑖 than PARALiA comm_opt with only 0.5% less mean performance. It is also evident that
the mean 𝑃𝐷𝑃𝑖 improvement via selection mostly affects smaller problems (boxplots lower parts defer more) and
depends on problem shape (Mean improvement: sq = 1%, fat-thin = 8%. thin-fat = 15%). Both these behaviors derive
from the fact that device selection is only meaningful for partially communication-bound problems, since for purely
computation-bound ones selecting all devices will always yield the highest 𝐸𝐷𝑃𝑖 . Summing up, PARALiA provides the
highest energy efficiency for all configurations, coupling better overall performance with efficient device selection for
communication-bound problems.

17

TACO, 2022, Fillme, NY Petros Anastasiadis, Nikela Papadopoulou, Georgios Goumas, Nectarios Koziris, Dennis Hoppe, and Li Zhong

Table 4. A summary of the performance of dgemm for the whole dataset for each implementation, using the 𝑚𝑒𝑎𝑛 (𝐺𝑓 𝑙𝑜𝑝)
𝑚𝑒𝑎𝑛 (𝑚𝑒𝑡𝑟𝑖𝑐) [22]. Small

problem (S), large problem (L) and total dataset (T) percentages are displayed separately for extra clarity regarding the underlying
performance. PARALiA comm_opt, PARALiA select(PERF) and PARALiA select(𝐸𝐷𝑃𝑖) vastly outperform previous approaches, with
PARALiA select(PERF) offering the best performance and PARALiA select(𝐸𝐷𝑃𝑖) being more balanced between performance and
energy efficiency as intended. PARALiA select(𝑃𝐷𝑃𝑖) leads to relatively low performance coupled with the best 𝑃𝐷𝑃𝑖 .

Implementation Performance (Gflops) 𝑃𝐷𝑃𝑖 (Gflops/W)
Small (S) Large (L) Total (T) Small (S) Large (L) Total (T)

cuBLASXt 1827 8516 7484 0.79 3.68 3.23
BLASX 4913 24755 21486 2.12 10.69 9.28
XKBLAS 3569 18572 15895 1.54 8.02 6.86
PARALiA comm_opt 9396 45840 39996 4.06 19.79 17.27
PARALiA select(PERF) 10641 46066 40933 5.32 19.94 18.06
PARALiA select(𝐸𝐷𝑃𝑖) 9453 45433 39804 6.30 20.16 18.64
PARALiA select(𝑃𝐷𝑃𝑖) 3970 6700 6530 13.71 23.14 22.56

4.3.3 In-depth analysis. While PARALiA’s communication optimizations affect most of the dataset, making their
performance contribution easily distinguishable, device selection benefits only problems that still remain communication-
bound after the aforementioned optimization. Consequently, since in Figures 7 and 8 such problems are overshadowed
by the compute-bound portion of the total dataset, we include Table 4 to better demonstrate the effect of selection by
splitting the dataset to two equal (310-320) parts, denoted small (S) and large (L), along with the total (T) dataset mean
values. We also include two other versions of PARALiA selection, select(PERF) and select(𝑃𝐷𝑃𝑖), to showcase the effect
of different optimization metrics, and make three basic observations.

First, the means show how PARALiA comm_opt, PARALiA select(PERF) and PARALiA select(𝐸𝐷𝑃𝑖) vastly outperform
all previous approaches in terms of performance in all (S, L, T) problems, with PARALiA select(PERF) having a (geo)mean
performance improvement in (S, L, T) of (4.6×, 5.6×, 5.1×) over cublasXt, (1.6×, 2.0×, 1.8×) over BLASX and (2.3×, 2.5×,
2.4×) over XKBLAS, and PARALiA select(𝐸𝐷𝑃𝑖) (4.3×, 5.5×, 4.8×) over cublasXt, (1.5×, 2.0×, 1.7×) over BLASX and (2.2×,
2.5×, 2.3) over XKBLAS. For all the above cases, the communication optimization yields similar results in (S, L, T), with
slightly better speedup on large problems due to previous libraries struggling with the interconnect optimization, while
PARALiA already reaches compute-bound performance earlier. PARALiA select(𝑃𝐷𝑃𝑖) on the other hand leads to vastly
inferior performance, since 𝑃𝐷𝑃𝑖 alone is a bad metric in multi-GPU due to often selecting 1 GPU to provide the most
flops/W.

Second, all PARALiA implementations also outperform previous approaches in terms of energy efficiency, with
PARALiA select(PERF) having a (geo)mean 𝑃𝐷𝑃𝑖 improvement in (S, L, T) of (7.8×, 5.6×, 6.6×) over cublasXt, (2.7×,
2.0×, 2.3×) over BLASX and (4.0×, 2.5×, 3.2×) over XKBLAS, PARALiA select(𝐸𝐷𝑃𝑖) (9.0×, 5.7×, 7.1×) over cublasXt,
(3.1×, 2.0×, 2.5×) over BLASX and (4.6×, 2.6×, 3.4×) over XKBLAS and PARALiA select(𝑃𝐷𝑃𝑖) (17.0×, 7.0×, 10.8×) over
cublasXt, (5.8×, 2.5×, 3.8×) over BLASX and (8.6×, 3.2×, 5.2×) over XKBLAS. Unlike performance which is mainly driven
by the LinkMap optimization, the additional 𝑃𝐷𝑃𝑖 improvement derives from device selection, which is evidently higher
in the small (S) problems where most selection occurs. As anticipated, PARALiA select(𝑃𝐷𝑃𝑖) offers the best energy
efficiency by far, since the selection target is also the evaluation metric, select(PERF) improves PARALiA comm_opt

𝑃𝐷𝑃𝑖 as a byproduct of using fewer devices when they provide similar performance and select(𝐸𝐷𝑃𝑖) provides a solid
𝑃𝐷𝑃𝑖 in between the other two (leaning towards performance) as intended.

Third, we consider PARALiA select(𝐸𝐷𝑃𝑖) to provide the best performance-𝑃𝐷𝑃𝑖 trade-off, focusing on performance
but also accounting for energy efficiency in order to avoid very inefficient choices (like for example using 8 devices to

18

PARALiA TACO, 2022, Fillme, NY

Fig. 9. DGEMM performance (Tflops) and energy effi-
ciency (Gflops/W) for half of the problem configurations
presented in fig. 7. BLASX and XKBLAS schedulers do
not adjust well to different computation devices, while
PARALiA still provides improved performance and 𝑃𝐷𝑃𝑖 ,
which is boosted by better workload distribution.

0

10

20

30

Pe
rfo

rm
an

ce
 (T

flo
ps

)

 Total Heterogeneous Dataset

0

5

10

15

PD
P i

 (G
flo

ps
/W

)

BLASX
XKBLAS

PARALiA comm_opt
PARALiA select(EDPi)

Table 5. A table summarizing the GEMM performance for the whole
dataset for each implementation, using the 𝑚𝑒𝑎𝑛 (𝐺𝑓 𝑙𝑜𝑝)

𝑚𝑒𝑎𝑛 (𝑚𝑒𝑡𝑟𝑖𝑐) [22] for half
of the small (HS), large (HL) and total (HT) problems of Table 4 ran on a
heterogeneous emulated system. PARALiA outperforms all multi-GPU
scheduler-based approaches both in performance and energy efficiency,
further boosted by a better workload selection.

Implementation Performance 𝑃𝐷𝑃𝑖
(Gflops) (Gflops/W)

(HS) (HL) (HT) (HS) (HL) (HT)
BLASX 5036 18621 17316 2.21 8.2 7.6
XKBLAS 5379 16782 15520 2.36 7.4 6.8
PARALiA comm_opt 12056 24892 24146 5.5 10.9 10.6
PARALiA select(PERF) 12160 27221 28117 6.2 14.7 13.2
PARALiA select(𝐸𝐷𝑃𝑖) 9453 26154 25645 7.9 15.3 15.1

get a 5% speedup from using 2), resulting in huge 𝑃𝐷𝑃𝑖 improvement in small problems (1.5X over PARALiA comm_opt)
with a similar performance. This energy efficiency improvement is virtually free to the user, deriving solely from
performance awareness, and is the main motivation behind our work. Additionally, the means for select(PERF) and
select(𝐸𝐷𝑃𝑖) show that selection can also lead to better performance even disregarding energy whatsoever, depending
on the communication-boundedness of the problem. Summing up, PARALiA vastly outperforms previous approaches
in terms of both performance and energy efficiency, with PARALiA select(𝐸𝐷𝑃𝑖) offering near-optimal performance
due to communication optimization coupled with superior 𝑃𝐷𝑃𝑖 due to performance awareness delivered from the
auto-tuning runtime.

4.4 Applicability to heterogeneous platforms

Device selection in homogeneous systems is meaningful for communication-bound problems but can be even more
beneficial in heterogeneous systems, where devices can have different computation capabilities. While heterogeneous
multi-device systems are not common nowadays, computational heterogeneity will probably be more commonplace in
the future. Heterogeneous-like execution scenarios can also appear in current homogeneous multi-device systems, by
applying different power management policies or sharing devices between users/processes. For this reason, we include
a proof-of-concept application of our approach to an artificial heterogeneous system, which we emulate by loading
the GPUs of the Vulcan clx-ai cluster with different computation workloads running in other processes. We configure
these workloads empirically to represent GPUs with lower performance, resulting in the following double FP peak
adjustments: 𝐺𝑃𝑈{0,1,4,6} = 3.5 Tflops, 𝐺𝑃𝑈{2,3} = 5 Tflops and 𝐺𝑃𝑈{5,7} = 7 Tflops (original peak). We also do not
adjust the power consumption of each device, resulting in different energy efficiency for each device category (e.g.
𝐺𝑃𝑈{5,7} are more energy efficient than𝐺𝑃𝑈{2,3} etc). This leads to a total system DP peak of 38 Tflops (vs 56 Tflops for
the original system), and a 𝑃𝐷𝑃𝑖 peak of 17.5 (vs 26 in the original system). We also note that a homogeneous-distribution
DP peak (without load-balancing) is 3.5 · 8 = 28 Tflops for future reference. Additionally, we limit the dataset to less
than half the problems, by doubling the data size iteration steps and the minimum size for a total of 250 problems, and
exclude cublasXT due to extreme benchmark times and having no load-balancing mechanism whatsoever. The results
for this heterogeneous-emulated system are shown in Table 5 and Figure 9.

19

TACO, 2022, Fillme, NY Petros Anastasiadis, Nikela Papadopoulou, Georgios Goumas, Nectarios Koziris, Dennis Hoppe, and Li Zhong

Figure 9 contains the aggregated performance (left) and energy efficiency-𝑃𝐷𝑃𝑖 (right) box-plots for the entirety
of the aforementioned heterogeneous dataset of 250 problems (HS - 90, HL - 160), which now leans more towards
computation-bound problems since the peak performance has lowered considerably while the interconnect is the same.
BLASX, XKBLAS and PARALiA comm_opt follow similar performance and 𝑃𝐷𝑃𝑖 patterns with the homogeneous system,
albeit at lower peak as expected. Communication optimization is still an issue for BLASX and XKBLAS resulting in
superior performance for PARALiA comm_opt, but all 3 approaches are limited by the aforementioned homogeneous-
distribution peak around 28 Tflops. On the other hand, PARALiA select(𝐸𝐷𝑃𝑖) manages to provide a better workload
distribution, which results in better performance by approaching the peak of 38 Tflops for large problems, and has far
superior 𝑃𝐷𝑃𝑖 both due to better performance and due to awareness of the different characteristics of each emulated
device. Summing up, PARALiA select(𝐸𝐷𝑃𝑖) vastly outperforms previous approaches both in terms of performance
and energy efficiency in the heterogeneous system as well, now further boosted by a better workload distribution in
different devices.

Table 5 shows the achieved mean performance in a similar layout with subsection 4.3 for the small (HS), large (HL)
and total (HT) dataset also displaying results for PARALiA select(PERF). PARALiA select(𝑃𝐷𝑃𝑖) is omitted due to always
selecting from𝐺𝑃𝑈{5,7} as expected without adding any additional insights. Since the performance is already visualized
in Figure 9 we use Table 5 for problem size-related insights and mean comparison, making the following observations.
First, PARALiA versions still outperform previous approaches in all subsets, but with a smaller performance difference
added to the baseline PARALiA comm_opt from communication optimization. Specifically, PARALiA select(PERF) has a
(geo)mean performance improvement in (S, L, T) of (2.2×, 1.7×, 1.8×) over BLASX and (2.0×, 1.9×, 1.9×) over XKBLAS,
and PARALiA select(𝐸𝐷𝑃𝑖) has (1.8×, 1.6×, 1.6×) over BLASX and (2.0×, 1.7×, 1.7×) over XKBLAS. This is expected, since
by reducing peak performance and removing smaller problems form the total dataset, the impact of communication
optimization is limited since many problems now become compute-bound. Second, the impact of workload selection
increases performance and energy efficiency both for PARALiA select(PERF) and PARALiA select(𝐸𝐷𝑃𝑖) in respect to
PARALiA comm_opt, since devices with lower computational power are used for a smaller part of the problem or omitted
by the auto-tuning runtime. This is more visible in the large (HL) problems which are compute-bound, since in small (HS)
problems the communication optimization is still more important. The difference between PARALiA select(PERF) and
PARALiA select(𝐸𝐷𝑃𝑖) becomes more evident when comparing them with PARALiA comm_opt; PARALiA select(PERF)

offers 1.12Xmean performance and 1.3Xmean 𝑃𝐷𝑃𝑖 improvement while PARALiA select(𝐸𝐷𝑃𝑖) offers 1.06X performance
and 1.5X 𝑃𝐷𝑃𝑖 . Summing up, both PARALiA select(PERF) and PARALiA select(𝐸𝐷𝑃𝑖) benefit from workload selection,
offering different insights and balance between performance and energy in the heterogeneous system, outlining the
increased importance of additional metrics for such future systems.

5 RELATEDWORK

This section provides basic background on BLAS modeling and auto-tuning, its role in BLAS optimization and how it is
applied on different architectures. We first focus on research work on CPU BLAS, as it includes the first approaches of
autotuning at runtime for performance improvement. We then look at research work on GPU BLAS, which is concerned
with computation and communication performance prediction, therefore offers background on modeling. Finally, we
discuss the background in hybrid CPU-GPU approaches, which are relevant to the problem of splitting a workload
appropriately to utilize different computational resources, encapsulating heterogeneity challenges.

20

PARALiA TACO, 2022, Fillme, NY

5.1 CPU BLAS autotuning

Since BLAS is an important part of a plethora of scientific code and solvers, from the early days of computing it played
a vital role in scientific code optimization. Dongarra et al. [1] firstly defined the BLAS standard as a set of "black box"
routines that should follow a specific input/output layout and should be optimized by vendors and library providers
transparently to the user, without any additional performance tuning from the side of the user. This black-box approach
required performance engineering effort to reimplement or tune BLAS routines for every new generation of hardware.
To offset this, Whaley et al. [11] implemented ATLAS, the most well-known BLAS autotuning framework, which
uses their automated empirical optimization of software (AEOS) technique. ATLAS explores many possible routine
implementations, tuning itself to each new system empirically by testing them and timing them, in order to improve
cache utilization, increase parallelism and load balance sub-problems. In a similar notion, Field et al. [23] defined a set
of a few kernels that can be used to optimize all BLAS 2 and BLAS 3 operations using empirical knowledge, and later
Low et al. [24] proved that an analytic approach is sufficient for replacing the empirical part with auto-tuning. These
techniques are not used directly in our work, but they form the groundwork for most BLAS-related autotuning and
model-based optimization.

5.2 GPU BLAS autotuning

Regarding GPU BLAS implementations, cuBLAS[2] was the first library to provide high performance on a single GPU,
expecting, however, the data to be available in the GPU. cuBLAS autotunes the CUDA kernel block sizes internally,
based on pre-performed offline empirical testing for each NVIDIA GPU. When the data reside outside the GPU memory,
the execution of a BLAS routine requires data transfers as well. Gregg et al. [25] were the first to highlight the problem
of data transfer overheads, arguing against the trend to exclude transfer overheads in the scientific reporting of the
performance of GPU applications, and proposed a taxonomy for data transfers and their impact on offload performance.
Numerous works model CPU-GPU transfers, using variants of the linear latency-bandwidth model for PCIe transfers
[17, 26–28] and machine learning [27] to provide user insights, without, however, specifically targeting BLAS, or
integrating them in an autotuner. The inclusion of transfers in GPU performance prediction improved accuracy, but
whenever there was communication/computation overlap, simplistic models still failed to predict the actual performance.
As highlighted by Hoefler et al. [13], modeling overlap areas is a crucial step in performance modeling. Towards this
direction, Gómez-Luna et al. [14] explored the use of CUDA streams for 3-way concurrency, but they consider the
stream creation time as the only overlap overhead. Werkhoven et al. [15] enhanced this work by offering multiple
performance models for communication/computation overlap for various common offload scenarios (RMA, 2-way,
3-way), introduced stream transfer overlap latency, and provided methods to obtain the optimal number of CUDA
streams for a given problem. In a similar notion, Liu et al. [19] offered a mathematical framework for software pipelining
on GPUs using non-equal tiles, which focused on partitioning, scheduling, and granularity. All these models offer high
accuracy, however, their modeling approach does not capture all problem characteristics present in BLAS. Moreover,
they were never used in practice for autotuning, and therefore never faced the practical problems of transfer prediction
in real systems, where empirical bandwidths defer from their theoretical counterparts depending on many parameters
like the type of src/dest memory (normal, unified,pinned) or the underlying sharing of interconnect resources [29–31]. In
our previous work CoCoPeLia [12], which aimed to create an autotuner that would selected good tiling sizes for domain
decomposition in single-GPU BLAS, we had to overcome both of these problems to enable performance estimation. To
overcome the first problem, we modified these models to account for common BLAS characteristics, like data reuse and

21

TACO, 2022, Fillme, NY Petros Anastasiadis, Nikela Papadopoulou, Georgios Goumas, Nectarios Koziris, Dennis Hoppe, and Li Zhong

bidirectional transfers. To overcome the second problem, we created an automated pipeline which fueled these models
with offline empirical tests and integrated these into an end-to-end BLAS framework, which provides state of the art
performance for single-GPU BLAS.

5.3 Hybrid CPU-GPU / Heterogeneous autotuning

Several research works focus on CPU-GPU hybrid BLAS execution, a topic relevant to our work, because of the problem
of heterogeneous splitting, namely the splitting of a BLAS problem into subproblems, based on performance estimations
for the execution on the CPU and the GPU, integrated in an end-to-end solution. Luk et al. [32] first proposed such an
end-to-end solution for model-based CPU-GPU splitting for a subset of BLAS routines. Their solution employs an initial
benchmark run, through which their backend BLAS functions obtain linear models for CPU and GPU performance, store
them in a database (file) and utilize them in subsequent runs, to split a problem depending on its predicted CPU and
GPU performance. Tomov et al. [4] envisioned a heterogeneous LAPACK and made use of BLAS-level parallelism, where
the program is represented as a collection of BLAS-based tasks and dependencies. To this end, they use task graphs to
represent BLAS task dependencies and use the CPU for small kernels, the execution of which is inefficient on GPUs, and
the GPU for everything else, overlapping CPU and GPU work and transfers. Humphrey et al. [33–35] developed CULA,
a CUDA framework which enables GPU-CPU simultaneous execution, with each one running predefined routine parts
most fit to its paradigm. Bernable et all. [18] employed CPU-GPU hybridization auto-tuning based on micro-benchmarks
run at the time of the library installation, which were used to feed polynomial model coefficients. Finally, Ma et al. [36]
explored energy efficiency, splitting the problem during execution until a balance between CPU-GPU execution time is
reached, and then scaling frequencies to limit energy consumption. All the above approaches do not take into account
transfers and overlap in their modeling/assumptions, favoring the GPU even in cases that the problem is transfer bound
if its computational capability is larger than the CPU, and do not target multi-GPU systems. This leaves a wide gap
between multi-GPU libraries and hybrid/heterogeneous BLAS research. In our work, PARALiA, we bridge this gap with
high-quality subproblem scheduling and communication optimization on multiple GPUs, together with performance
awareness and device selection, to ensure resource utilization for any type of heterogeneity.

6 CONCLUSION

In this work, we have presented PARALiA, an end-to-end framework for multi-GPU BLAS execution. Similar to
existing multi-GPU BLAS approaches, PARALiA employs problem splitting, subproblem scheduling, and computation-
communication overlap to maximize the performance of BLAS routines on multi-GPU setup. Contrary to existing
approaches, PARALiA puts emphasis on optimizing the communication, through a generic hardware abstraction,
which allows for more accurate performance estimation, offered by an autotuner to the scheduler component within
PARALiA. Additionally, PARALiA performs careful device selection, based on a pre-set optimization target, which can
be performance or some energy-related metric, avoiding resource waste.

We evaluate PARALiA on a multi-GPU testbed which exposes heterogeneous connections between the devices.
Our experiments focus on the performance of GEMM with double-precision, as a representative level-3 BLAS. Our
evaluation shows that PARALiA outperforms the state-of-the-art BLASX and XKBLAS multi-GPU BLAS frameworks
with a (geo)mean improvement of 1.7x and 2.4x respectively, with significant performance gains for routine executions
where the data originally reside on the various GPUs. We additionally show how, with device selection and by setting
different optimization targets, PARALiA is able to achieve high performance coupled with better energy efficiency,
with a (geo)mean improvement of 2.5x versus BLASX and 3.4x versus XKBLAS. Finally, PARALiA adjusts well to

22

PARALiA TACO, 2022, Fillme, NY

a heterogeneous system with different compute capabilities among the GPUs, offering improved performance and
superior energy efficiency over BLASX and XKBLAS.

We conclude that, despite the common conception that level-3 BLAS routines are well-suited for multi-GPU systems,
high performance for any problem size and data location can only be achieved by minimizing communication costs.
As multi-GPU setups become more heterogeneous, both resource selection and communication optimization have
increasing importance for the performance and energy efficiency of BLAS libraries alike. In the future, we aim to
extend PARALiA with more sophisticated scheduling techniques, and we will work towards the generalization of the
autotuning approach of PARALiA and the extensibility of the PARALiA components for other important compute
libraries. Finally, looking at advanced multi-GPU systems, with more balanced bandwidth levels, we aim to improve our
rerouting algorithm to balance overlap and address congestion issues.

ACKNOWLEDGEMENT

This work has been supported by the project CATALYST, which is funded by the Ministry of Science, Research and
Arts (MWK), Baden-Württemberg, Germany.

REFERENCES
[1] J. Dongarra, “Basic linear algebra subprograms technical (blast) forum standard ii,” IJHPCA, vol. 16, pp. 1–111, 05 2002.
[2] “developer.nvidia.com/cublas.”
[3] E. Chan, F. Van Zee, P. Bientinesi, E. Quintana-Orti, G. Quintana-Orti, and R. Van de Geijn, SuperMatrix: a Multithreaded Runtime Scheduling System

for Algorithms-by-blocks, ser. Technical report (University of Texas at Austin. Department of Computer Sciences). Computer Science Department,
University of Texas at Austin, 2007. [Online]. Available: https://books.google.gr/books?id=ggn-jwEACAAJ

[4] S. Tomov, J. Dongarra, and M. Baboulin, “Towards dense linear algebra for hybrid gpu accelerated manycore systems,” Parallel Computing, vol. 36,
no. 5, pp. 232 – 240, 2010, parallel Matrix Algorithms and Applications. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0167819109001276

[5] E. Agullo, C. Augonnet, J. Dongarra, H. Ltaief, R. Namyst, S. Thibault, and S. Tomov, “Faster, Cheaper, Better – a Hybridization Methodology to
Develop Linear Algebra Software for GPUs,” in GPU Computing Gems, W. mei W. Hwu, Ed. Morgan Kaufmann, Sep. 2010, vol. 2. [Online].
Available: https://hal.inria.fr/inria-00547847

[6] W. Wu, A. Bouteiller, G. Bosilca, M. Faverge, and J. Dongarra, “Hierarchical dag scheduling for hybrid distributed systems,” in 2015 IEEE International
Parallel and Distributed Processing Symposium, 2015, pp. 156–165.

[7] “developer.nvidia.com/cublasxt.”
[8] “docs.nvidia.com/cuda/nvblas.”
[9] L. Wang, W. Wu, J. Xiao, and Y. Yang, “BLASX: A high performance level-3 BLAS library for heterogeneous multi-gpu computing,” CoRR, vol.

abs/1510.05041, 2015. [Online]. Available: http://arxiv.org/abs/1510.05041
[10] T. Gautier and J. V. F. Lima, “Xkblas: a high performance implementation of blas-3 kernels on multi-gpu server,” in 2020 28th Euromicro International

Conference on Parallel, Distributed and Network-Based Processing (PDP), 2020, pp. 1–8.
[11] R. Clint Whaley, A. Petitet, and J. J. Dongarra, “Automated empirical optimizations of software and the atlas project,” Parallel Computing, vol. 27,

no. 1, pp. 3–35, 2001, new Trends in High Performance Computing. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167819100000879

[12] P. Anastasiadis, N. Papadopoulou, G. Goumas, and N. Koziris, “Cocopelia: Communication-computation overlap prediction for efficient linear
algebra on gpus,” in 2021 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), 2021, pp. 36–47.

[13] T. Hoefler, W. Gropp, W. Kramer, and M. Snir, “Performance modeling for systematic performance tuning,” in SC ’11: Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis, 2011, pp. 1–12.

[14] J. Gómez-Luna, J. M. González-Linares, J. I. Benavides, and N. Guil, “Performance models for asynchronous data transfers on consumer graphics
processing units,” Journal of Parallel and Distributed Computing, vol. 72, no. 9, pp. 1117 – 1126, 2012, accelerators for High-Performance Computing.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/S0743731511001468

[15] B. v. Werkhoven, J. Maassen, F. J. Seinstra, and H. E. Bal, “Performance models for cpu-gpu data transfers,” in 2014 14th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, 2014, pp. 11–20.

[16] NVIDIA, P. Vingelmann, and F. H. Fitzek, “Cuda, release: 10.2.89,” 2020. [Online]. Available: https://developer.nvidia.com/cuda-toolkit
[17] M. Boyer, J. Meng, and K. Kumaran, “Improving gpu performance prediction with data transfer modeling,” in 2013 IEEE International Symposium on

Parallel Distributed Processing, Workshops and Phd Forum, 2013, pp. 1097–1106.

23

developer.nvidia.com/cublas
https://books.google.gr/books?id=ggn-jwEACAAJ
http://www.sciencedirect.com/science/article/pii/S0167819109001276
http://www.sciencedirect.com/science/article/pii/S0167819109001276
https://hal.inria.fr/inria-00547847
developer.nvidia.com/cublasxt
docs.nvidia.com/cuda/nvblas
http://arxiv.org/abs/1510.05041
https://www.sciencedirect.com/science/article/pii/S0167819100000879
https://www.sciencedirect.com/science/article/pii/S0167819100000879
http://www.sciencedirect.com/science/article/pii/S0743731511001468
https://developer.nvidia.com/cuda-toolkit

TACO, 2022, Fillme, NY Petros Anastasiadis, Nikela Papadopoulou, Georgios Goumas, Nectarios Koziris, Dennis Hoppe, and Li Zhong

[18] G. Bernabé, J. Cuenca, L.-P. García, and D. Giménez, “Tuning basic linear algebra routines for hybrid cpu+gpu platforms,” Procedia
Computer Science, vol. 29, pp. 30 – 39, 2014, 2014 International Conference on Computational Science. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S187705091400180X

[19] B. Liu, W. Qiu, L. Jiang, and Z. Gong, “Software pipelining for graphic processing unit acceleration: Partition, scheduling and
granularity,” The International Journal of High Performance Computing Applications, vol. 30, no. 2, pp. 169–185, 2016. [Online]. Available:
https://doi.org/10.1177/1094342015585845

[20] T. Hoefler, T. Schneider, and A. Lumsdaine, “Loggp in theory and practice–an in-depth analysis of modern interconnection networks and bench-
marking methods for collective operations,” Simulation Modelling Practice and Theory, vol. 17, no. 9, pp. 1511–1521, 2009.

[21] “Vulcan, hpc cluster.” [Online]. Available: https://kb.hlrs.de/platforms/index.php/NEC_Cluster_Hardware_and_Architecture_(vulcan)
[22] T. Hoefler and R. Belli, “Scientific benchmarking of parallel computing systems: Twelve ways to tell the masses when reporting performance results,”

in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, ser. SC ’15. New York, NY, USA:
Association for Computing Machinery, 2015. [Online]. Available: https://doi.org/10.1145/2807591.2807644

[23] F. G. Van Zee and R. A. van de Geijn, “BLIS: A framework for rapidly instantiating BLAS functionality,” ACM Transactions on Mathematical Software,
vol. 41, no. 3, pp. 14:1–14:33, Jun. 2015. [Online]. Available: http://doi.acm.org/10.1145/2764454

[24] T. M. Low, F. D. Igual, T. M. Smith, and E. S. Quintana-Ortí, “Analytical modeling is enough for high-performance BLIS,” ACM Transactions on
Mathematical Software, vol. 43, no. 2, pp. 12:1–12:18, Aug. 2016. [Online]. Available: http://doi.acm.org/10.1145/2925987

[25] C. Gregg and K. Hazelwood, “Where is the data? why you cannot debate cpu vs. gpu performance without the answer,” in (IEEE ISPASS) IEEE
International Symposium on Performance Analysis of Systems and Software, 2011, pp. 134–144.

[26] D. Schaa and D. Kaeli, “Exploring the multiple-gpu design space,” in 2009 IEEE International Symposium on Parallel Distributed Processing, 2009, pp.
1–12.

[27] A. Riahi, A. Savadi, and M. Naghibzadeh, “Comparison of analytical and ml-based models for predicting cpu–gpu data transfer time,” Computing,
January 2020.

[28] M. R. Meswani, L. Carrington, D. Unat, A. Snavely, S. Baden, and S. Poole, “Modeling and predicting performance of high performance computing
applications on hardware accelerators,” in 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops PhD Forum, 2012,
pp. 1828–1837.

[29] W. Li, G. Jin, X. Cui, and S. See, “An evaluation of unified memory technology on nvidia gpus,” in 2015 15th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, 2015, pp. 1092–1098.

[30] A. Mishra, L. Li, M. Kong, H. Finkel, and B. Chapman, “Benchmarking and evaluating unified memory for openmp gpu offloading,” in Proceedings of
the Fourth Workshop on the LLVM Compiler Infrastructure in HPC, 2017, pp. 1–10.

[31] C. Pearson, A. Dakkak, S. Hashash, C. Li, I.-H. Chung, J. Xiong, and W.-M. Hwu, “Evaluating characteristics of cuda communication primitives on
high-bandwidth interconnects,” in Proceedings of the 2019 ACM/SPEC International Conference on Performance Engineering, 2019, pp. 209–218.

[32] C.-K. Luk, S. Hong, and H. Kim, “Qilin: Exploiting parallelism on heterogeneous multiprocessors with adaptive mapping,” in 2009 42nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), 2009, pp. 45–55.

[33] J. R. Humphrey, D. K. Price, K. E. Spagnoli, A. L. Paolini, and E. J. Kelmelis, “Cula: hybrid gpu accelerated linear algebra routines,” in Defense +
Commercial Sensing, 2010.

[34] K. E. Spagnoli, J. R. Humphrey, D. K. Price, and E. J. Kelmelis, “Accelerating sparse linear algebra using graphics processing units,” in Defense +
Commercial Sensing, 2011.

[35] J. R. Humphrey, D. K. Price, K. E. Spagnoli, and E. J. Kelmelis, “Accelerating cula linear algebra routines with hybrid gpu and multicore computing,”
in ., 2012.

[36] K. Ma, X. Li, W. Chen, C. Zhang, and X. Wang, “Greengpu: A holistic approach to energy efficiency in gpu-cpu heterogeneous architectures,” in 2012
41st International Conference on Parallel Processing, 2012, pp. 48–57.

24

http://www.sciencedirect.com/science/article/pii/S187705091400180X
http://www.sciencedirect.com/science/article/pii/S187705091400180X
https://doi.org/10.1177/1094342015585845
https://kb.hlrs.de/platforms/index.php/NEC_Cluster_Hardware_and_Architecture_(vulcan)
https://doi.org/10.1145/2807591.2807644
http://doi.acm.org/10.1145/2764454
http://doi.acm.org/10.1145/2925987

	Abstract
	1 Introduction
	2 Background
	2.1 Level-3 BLAS decomposition and distribution
	2.2 Communication optimization
	2.3 Load balancing for heterogeneity

	3 The PARALiA Framework
	3.1 The autotuner algorithm
	3.2 The LinkMap representation
	3.3 Offload performance estimation
	3.4 Database
	3.5 Preprocessor
	3.6 Scheduler

	4 Evaluation
	4.1 Experimental setup
	4.2 Evaluation Dataset
	4.3 Comparison with state-of-the-art
	4.4 Applicability to heterogeneous platforms

	5 Related Work
	5.1 CPU BLAS autotuning
	5.2 GPU BLAS autotuning
	5.3 Hybrid CPU-GPU / Heterogeneous autotuning

	6 Conclusion
	References

