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Abstract—Graphics Processing Units (GPUs) are well estab-
lished in HPC systems and frequently used to accelerate linear
algebra routines. Since data transfers pose a severe bottleneck
for GPU offloading, modern GPUs provide the ability to overlap
communication with computation by splitting the problem to fine-
grained sub-kernels that are executed in a pipelined manner.
This optimization is currently underutilized by GPU BLAS
libraries, since it requires an approach to select an efficient
tiling size, which in turn leads to a challenging problem that
needs to consider routine, system, data, and problem-specific
characteristics. In this work, we introduce an elaborate 3-way
concurrency model for GPU BLAS offload time that considers
previously neglected features regarding data access and machine
behavior. We then incorporate our model in an automated,
end-to-end framework (called CoCoPeLia) that supports overlap
prediction, tile selection and effective tile scheduling. We validate
our model’s efficacy for dgemm, sgemm, and daxpy on two
testbeds, with our experimental results showing that it achieves
significantly lower prediction error than previous models and
provides near-optimal tiling sizes for all problems. We also
demonstrate that CoCoPeLia leads to considerable performance
improvements compared to the state of the art BLAS routine
implementations for GPUs.

I. INTRODUCTION

Dense linear algebra operations appear very frequently
in high-performance computing (HPC) applications render-
ing their performance highly critical for their scalability.
The standardization of the Basic Linear Algebra suprograms
(BLAS) [1] in the early days of HPC has eased the devel-
opment of scientific code since domain experts have been
relying on standardized and performance-optimized libraries
to build more complex simulations at scale. The regular
parallelism of BLAS routines makes them a good fit for
GPUs, hence the existence of many GPU-BLAS libraries, the
most common being cuBLAS, a CUDA-like BLAS library for
NVIDIA GPUs [2]. cuBLAS offers highly optimized primitive
BLAS operations, however requires input data to reside on the
GPU memory, a task that is left to the programmer.

To ease the programming effort of moving data between the
GPU and host memory, NVIDIA introduced unified memory
in CUDA 6.0, enabling the GPU to directly access host
memory. Despite the improvement in programmability, critical
performance issues exist: the limited bandwidth between the
host and the GPU imposes a transfer overhead, while the
unified memory abstraction can lead to additional performance
loss [3]–[5]. A common practice to reduce these overheads
is to overlap host-to-device (h2d) and device-to-host (d2h)
transfers with computation, known as 3-way-concurrency. This

practice relies on splitting the initial problem data into smaller
chunks and offloading it to the GPU in a pipelined manner,
allowing the computation on a chunk to be performed while
output data from the previous chunk and input data for the
next chunk are being transferred. This optimization is usually
left to the programmer for level-1 and level-2 BLAS but
is integrated into the state-of-art multi-GPU level-3 BLAS
libraries like cuBLASXt [6], the multi-GPU cuBLAS exten-
sion for level-3 BLAS, NVBLAS [7], a LAPACK-compatible
wrapper for cuBLASXt, as well as BLASx [8] and XKBlas [9],
two approaches focusing on reducing avoidable transfers and
load-balancing overheads to improve performance. All these
libraries are CUDA-based and their input data may reside on
host memory, GPU memory or a combination of both.

3-way-concurrency for BLAS on GPUs requires an ap-
proach to select the size for the computational chunks, (hence-
forth tiling size T ) which is a complex problem [8], since tiling
size affects the granularity of computation and communication,
together with other parameters like the nature of the routines
itself, the data layout, the initial data locations, the problem
size, and the underlying architecture. Existing libraries trade
performance for programmability or conversely, to simplify
the problem of tiling size selection. cuBLASXt extends BLAS
parameters with the tiling size and assigns its selection to
the programmer. This approach cannot guarantee optimal
performance unless the programmer tests the library and tunes
the tiling size for each specific problem size. BLASX, and
NVBLAS, on the other hand, set the tiling size internally to
a static value, presumed to provide an average performance
gain across a range of commonly used system characteristics,
routine parameters, and problem sizes. While this approach is
more user-friendly, it still sacrifices performance for generality.
XKBlas provides both options through wrapping.

In order to get the best out of both worlds (performance and
programmability), we need to incorporate within an optimized
GPU BLAS library an adequately accurate performance pre-
diction model for 3-way concurrency that will support effective
tile selection. Prior work copes with the problem of 3-way-
concurrency modeling [10]–[12], but because of the problem’s
complexity these models need to make restricting assumptions
regarding data location, shape, and kernel execution charac-
teristics deeming them inaccurate or completely inapplicable
to BLAS - especially level-3 BLAS. Werkhoven et al. [11]
propose the most relevant generic 3-way-concurrency model
for the total offload time. Their model takes as input the kernel



execution time on the GPU and estimates transfer times with
semi-empirical sampling, but does not take into account data
reuse and non-linearities in execution time. These restrictions
make the model more applicable to lower-level BLAS routines
but inaccurate for many scenarios of level-3 BLAS GPU
offloading.

In this paper we provide a solution for the 3-way-
concurrency optimization problem on GPUs that supports
near-optimal offload BLAS performance. To achieve this, we
focus on 1) how to accurately predict the performance of GPU
BLAS kernels including 3-way-concurrency and 2) how to uti-
lize this prediction to reach near-optimal automated overlap.
Overall, this paper makes the following contributions:

1) It introduces two 3-way-concurrency analytical models
for BLAS GPU offload time, for cases with and without
data reuse (Section III).

2) It develops an automated empirical methodology to
instantiate these models on a system and offers three
example models for daxpy, dgemm, and sgemm (Sec-
tion IV).

3) It combines the above with a runtime tile scheduler
into CoCoPeLia, an end-to-end GPU BLAS framework
utilizing automatic tiling size selection (Section IV),
which demonstrates considerable performance improve-
ment over similar state-of-the-art libraries (Section V).

II. MOTIVATION-BACKGROUND

A. Motivation
To achieve performance gain with 3-way-concurrency, GPU

BLAS libraries need to internally split the initial problem
size into tiles (more details are provided in Sections III and
IV). Most optimized overlap libraries use square tiling, i.e.
they split matrices to equal squares T × T , where T is the
tiling size. Irrespective of the tile distribution mechanism of
each library, selecting the appropriate tiling size significantly
affects the resulting performance [8], [9], [11], [12]. Figure
1 illustrates the effect of tiling sizes T on performance
for cuBLASXtDgemm on two testbeds. As the tiling size
decreases, the performance increases due to better overlap, but
after reaching one or two maxima, it rapidly degrades. These
maxima “break-points” vary greatly across the two testbeds
and problem sizes.

GPU BLAS libraries follow different strategies for tiling
size selection, trading between programming ease and perfor-
mance. We argue that none of these approaches are generic
enough or performance-optimal. As an example, we annotate
dgemm performance using the static tiling size of T = 4096,
which offers the best average performance for cuBLASXt
(details in Section V), for the examples in Figure 1; it results
in up to 9.4% slowdown on testbed I and up to 14.7%
slowdown for testbed II. Furthermore, static tiling sizes offer
no performance guarantee for future machines with different
transfer bandwidth/computation ratios and can result in in-
creased slowdowns in such cases. These observations make a
compelling case for dynamic tiling size selection, driven by
accurate performance models.
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Fig. 1. cuBLASXtDgemm performance on two different testbeds, relative to
the tiling size T used for internal 3-way overlap with T × T tiles, for four
different problem sizes (no transpose). The vertical lines outline the tiling size
that achieves the best performance for each problem.

B. Related work

1) Models for GPU offloading: A signigicant amount of
prior work focuses on modeling the computation time or
performance of GPU kernels [13]–[18]. However, these mod-
els neglect offload time when data transfers are required
before, after or during kernel execution. Gregg et al. [19]
first highlighted this problem, arguing against the trend of
scientific reporting of the performance of GPU applications,
transfers overhead excluded, and propose a taxonomy for data
transfers and their impact on offload performance. Numerous
later works model CPU-GPU transfers, using variances of the
linear latency-bandwidth model for PCIe transfers [20]–[23].

When modeling the serial offload scenario, including trans-
fers improves prediction accuracy. However, if there is com-
munication/computation overlap, simplistic models fail to pre-
dict the actual performance, therefore modeling overlap areas
is a crucial step in performance modeling [24]. Towards this
direction, Gómez-Luna et al. [10] explore the use of CUDA
streams for 3-way concurrency, but they consider the stream
creation time as the only overlap overhead. Werkhoven et
al. [11] enhance this work by offering multiple performance
models for communication/computation overlap for various
common offload scenarios (RMA, 2-way, 3-way), introduce
stream transfer overlap latency, and provide methods to obtain
the optimal number of CUDA streams for a given problem.
Their models offer high accuracy, however, their modeling
approach does not capture all problem characteristics present
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in BLAS (details in Section III). Liu et al. [12] offer a
mathematical framework for software pipelining on GPUs,
using non-equal tiles and focus on partitioning, scheduling and
granularity. However, they target problems defined by linear
functions and with equal input/output bytes, which does not
apply to most BLAS routines.

2) GPU BLAS tiling libraries: When considering GPU
BLAS offloading, there is limited interest in level-1 and level-
2 routines, which are usually heavily transfer bound and
offloading them individually is inefficient. On the contrary,
multiple level-3 BLAS libraries internally use tiling for better
cache and memory utilization and to enable task parallelism
[25]–[29]. Among these, PaRSEC [29] is the most efficient for
multi-GPU execution, however, it is not compatible with the
legacy LAPACK layout and also suffers from high scheduling
overheads in small problems. Some existing libraries are
specifically designed for level-3 BLAS multi-GPU usage [6]–
[9]. cuBLASXt, and its wrapper NVBLAS [6], [7], the state-
of-practice libraries introduced by NVIDIA for automatic GPU
offloading, do not account for data reuse and leave tiling size
tuning to the user. BLASX [8] overcomes the first problem with
a runtime tile management engine, significantly decreasing the
transfer volume and thus increasing performance. The tiling
size in this case is static and selected at compile time, to
provide good average performance. XKBLAS [9] focuses on
problems that perform multiple subsequent BLAS invocations,
like iterative solvers, and provides a library which further
limits transfers, by taking into account intermediate data
locations, but offers no insights regarding tiling size selection.
In this work, we propose a performance-aware static workload
distribution based on problem-specific tiling size selection,
achieved through a prediction model for 3-way overlap offload
time prediction and incorporate our method in an end-to-end
framework, which offers optimized BLAS offloading through
runtime tiling size prediction.

III. MODELS FOR GPU BLAS OVERLAP

This section covers the core of this work, the CoCoPeLia
3-way concurrency prediction models. We first discuss 3-way
concurrency on BLAS. Then, we build upon a baseline model
and propose adjustments to improve prediction accuracy.

Table I describes the notation used throughout this Section,
split in two categories; routine-specific (e.g. for a single gemm
problem) and data specific (e.g. A,B,C - the matrices of the
gemm routine) values. Certain parameters (e.g. opd, dtype)
are inferred directly from the BLAS standard, others (e.g. D1,
D2, D3) are problem-specific, while others are a combination
of both (e.g. geti, seti, S1i, S2i). We provide details on
obtaining or instantiating these parameters in Section IV. T is
the optimization target parameter, namely the tiling size, and
the formulas for k, kin are defined later in this section.

A. BLAS overlap characteristics

In CUDA, concurrency is a term referring to software
pipelining, in order to overlap CPU-GPU communication with
GPU computation, for any problem that can be split in parts

TABLE I
BLAS MODELING NOTATION

D1[, D2[, D3] routine problem size dimensions
dtype routine datatype
k the number of subproblems after tiling
kin the number of subproblems with input after tiling
T tiling size
opd number of input/output data structures
Per data structure: i : 0→ opd
geti flag to denote if data requires transferring from the

host to the GPU
seti flag to denote if data requires transferring from the

GPU to the host
S1i, S2i initial dimensions, extracted from the routine prob-

lem size dimensions

without complex dependencies. We are interested in 3-way
concurrency for BLAS, where the problem is split into subker-
nels, each of which requires 1) host-to-device (h2d) transfers
for its input, 2) computation on the GPU and 3) device-to-host
(d2h) transfers of its output. The three steps must be executed
serially for each subkernel, but can be overlapped with the
steps of previous and following subkernels. 3-way concurrency
execution time prediction relies on modeling computation
time, transfer time and computation/communication overlap,
with the latter being a highly challenging problem. In order to
simplify this problem, overlap models often make a number
of assumptions, outlined below.

1) Non-linear kernel execution times: Previous approaches
make the assumption that if a problem is split in k subproblems
and these are executed sequentially on the GPU, the total
execution time will not change considerably, which does not
hold for most BLAS routines. First, BLAS operations have
internal dimensions and dependencies, which, in the case of
tiling, may require additional reduction operations, while not
necessarily producing output that requires transfers. Second,
the performance of level-2/3 BLAS kernels does not depend
linearly on their working set [26], [30], [31], since the prob-
lem shape (e.g. square vs fat-by-thin matrix multiplications)
influences performance. Third, if a subproblem becomes too
small, the GPU is underutilized and performance drops.

2) Data location awareness: Previous work [10]–[12] as-
sumes that all data is initially resident on the memory of the
host CPU, and only targets the full offload scenario. However,
a common scenario for BLAS execution is for a kernel to be
executed iteratively. In this case, some of the data may still
be resident on the GPU [9].

3) Bidirectional overlap: 3-way concurrency goes beyond
simple communication/computation overlap, considering also
bidirectional host-device overlap (h2d with d2h transfers).
While modern GPUs have virtually separate copy engines for
h2d and d2h, both engines utilize the same communication
medium and therefore simultaneous usage imposes a slow-
down [11], [12]. This slowdown is asymmetric; usually the
d2h transfers are more heavily affected, but the extent of this
effect depends on the underlying interconnect [5].

4) Data reuse: Data reuse refers to the case when in a tiled
problem, part of the data required for a subkernel’s execution
is also needed by subsequent subkernels. In level-3 BLAS,
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Fig. 2. An example of the 3-way concurrency pipeline for a gemm imple-
mentation which iterates through the tiles of the M,N,K dimensions, for a
problem with tTh2d < tTGPU < 2 · tTh2d.

it can be present in all three dimensions of the problem.
Level-3 BLAS GPU libraries take advantage of data reuse,
to better utilize caches and limit transfers [8], [9]. However,
the reuse pattern and overlap percentage depend on the GPU
architecture and the BLAS operation, making it difficult to
accurately model data reuse.

B. BLAS 3-way concurrency models.

As previous models outline, to enable 3-way concurrency
the initial problem is split to k equal parts. We split all problem
dimensions, and use an equal tiling size T across them. This
applies to level-1 BLAS, as well as level-2 and -3 BLAS
square tiling, with the latter being the typical approach in
BLAS GPU libraries [6], [8]. Thus, k is given by:

k =
D1

T
[×D2

T
][×D3

T
]

where D2 (D2 and D3) applies to level-2 (level-3) BLAS.
In our approach, modeling 3-way concurrency requires

knowledge of the execution times for each of the overlapped
parts. Since we do not assume a linear relation of the total
time with the subkernel execution times, we consider that the
total execution time (overlap time) is a function of k and
the individual times for h2d transfer tTh2d, kernel execution
tTGPU , and d2h transfer tTd2h, for each subproblem with tiling
size T that is overlapped. Thus, we consider the following
contributions to the total execution time:

tTh2d = f1(system, dtype, T [, T ])

tTd2h = f2(system, dtype, T [, T ])

tTGPU = f3(routine, dtype, T [, T [, T ]])

where tTh2d, tTd2h are the system-wide transfer times for a single
tile of size T (if it is a vector) or T ×T (if it is a matrix), and
tTGPU is the BLAS routine-specific execution time for a kernel
where D1[= D2[= D3]] = T . These times are empirically
collected in the CoCoPeLia framework (see Section IV).

We assume that in the 3-way-concurrency scenario, each
subkernel execution on the GPU is overlapped with 1) the
subsequent subkernel input and 2) the previous subkernel
output, in a pipelined manner [10]–[12]. Under the assumption

that all data initially reside on the CPU and are both input and
output data, the 3-way-concurrency execution time for a BLAS
routine is then:
tbaselinetotal = max(tTGPU , opd · tTh2d, opd · tTd2h)× (k − 1)

+ opd · tTh2d + tTGPU + opd · tTd2h (1)

1) Data Location Modeling: In practice, Eq. 1 overesti-
mates transfers to and from the GPU; by including the opd
multiplier, we assume that all data is both input and output
data and therefore must be transferred. To avoid this, we use
the geti, seti flags, which determine which of the opd tiles
require to be fetched to the GPU or returned to the host. We
define tTin and tTout as the time required to transfer all tiles for
which geti = 1 and seti = 1, respectively, as follows:

tTin =

opd∑
i=0

geti · tTh2d and tTout =

opd∑
i=0

seti · tTd2h
Following the notion of Eq. 1, the location-aware execution

time of a BLAS problem using 3-way concurrency is:

tloctotal = max(tTGPU , t
T
in, t

T
out)× (k − 1)

+ tTin + tTGPU + tTout (2)

2) Bidirectional Slowdown Modeling: As simultaneous h2d
and d2h transfers impose a slowdown on both sides, we define
the slowdown factors slh2d bid, sld2h bid for each direction
as scaling factors applied to transfer time, in the case the
opposite direction is also in use for the whole duration of the
transfer. We estimate the slowdown factors empirically in the
CoCoPeLia framework (Section IV). The bidirectional transfer
time tT{in,out} bid of a h2d or d2h transfer, when the opposite
link is also in use, then becomes:

tT{in,out} bid = sl{h2d,d2h} bid · tT{in,out}
However, full bidirectional overlap only applies in practice
if tTin = tTout. In a common case, two simultaneous opposite
transfers have different duration, and the total overlap time
tTover is split in two parts; 1) the part during which actual
overlap occurs and 2) the single-way transfer of the remaining
partially-complete transfer:

tTover =


tTout bid +

tTin bid−t
T
out bid

slh2d bid
, if tTin bid ≥ tTout bid

tTin bid +
tTout bid−t

T
in bid

sld2h bid
, otherwise

(3)
The fraction in the equation corresponds to the time required
to transfer the remaining part of the longer transfer. Eq.
2 therefore evolves to account for bidirectional overlap as
follows:
tbitotal = max(tTGPU , t

T
over)× (k − 1) + tTin + tTGPU + tTout

(4)

3) Data Reuse Modeling: All previous models are not
accurate for optimized level-3 BLAS problems, as they do
not account for data reuse. Reuse exists in both level-2 BLAS
(vector reuse) and level-3 BLAS (matrix reuse), but is mostly
relevant to level-3 BLAS performance. Figure 2 shows an ex-
ample of a level-3 BLAS routine with data reuse. Initially, the
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problem is transfer-bound. Then, h2d transfers decrease due
to data reuse, and the problem becomes execution-bound. The
example refers to a specific tTh2d, t

T
GPU ratio, and the amount

of reuse and this ratio can significantly alter performance. We
construct a generic model, for the ideal reuse case, namely
full reuse, where all available tile reuse potential is utilized.

Given the tiling size T , we can compute how many tiles an
initial matrix i of dimensions S1i, S2i is split into, as follows:

tilesi =
S1i
T
· S2i
T
, i : 0→ opd

In level-3 BLAS, we opt to account for the transfer of
tiles only once, assuming that they then become available
for all subsequent subkernels that use them. Depending on
its dependencies and what has already been transferred to the
GPU, a subkernel may require the transfer of zero up to three
tiles (i.e., the case of the first subkernel).

We compute the number of subkernels among the k total
subkernels that require one or two tile transfers, as follows:

kin =

opd∑
i=0

(geti · tilesi − 1)

For a more optimized implementation, the larger percentage
of kin collapses to single tile transfers. We follow this assump-
tion for our final 3-way-concurrency offload time model with
reuse, which is given by the following model:

tretotal = max(tTh2d, t
T
GPU ) · kin + tTGPU · (k − kin) + tTin + tTout

(5)

C. Model overview per level

Level-1 BLAS routines perform vector-vector operations and
their working set is D1 = N . These transfer bound routines
have no working set overlaps and are therefore modeled
effectively by Eq. 4.

Level-2 BLAS routines perform matrix-vector operations
and have two problem dimensions D1, D2 where D1 is the
output vector length and D2 is the remaining dimension of the
multiplied matrix. There exists a minor working set overlap
among sub-kernels for the vector, but it is relatively small (D1)
compared to the matrix dimensions (D1×D2), and therefore
Eq. 4 is still sufficient for modeling them.

Level-3 BLAS routines perform matrix-matrix operations
and have 3 problem dimensions D1, D2, D3 where D1, D2
are the output matrix dimensions and D3 is the internal matrix
multiplication dimension. Although Eq. 4 can provide an
estimate for the offload time of many applications, optimized
implementations that employ tiling and data reuse lead to
higher performance. Since our focus is tiling size selection
for state of the art performance, we devise Eq. 5 to account
for data reuse in level-3 BLAS.

IV. PUTTING IT ALL TOGETHER: THE COCOPELIA
framework

Having presented elaborate 3-way concurrency prediction
models for BLAS routines on GPUs, we now turn our attention
on how to utilize them in practice. We present the CoCoPeLia
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Fig. 3. The CoCoPeLia framework pipeline. During the offline deployment
phase the framework performs micro-benchmarks. Then, when a BLAS
routine is invoked with some problem parameters for the first time, the tile
selection runtime uses them in conjugation with the values obtained during
deployment to predict the best tiling size T for this problem. Finally the
library is invoked to perform the operation for the given Tbest and produce
the routine result. In case the routine has been called with the same problem
parameters before, all unnecessary steps are skipped and the previous tiling
scheme and Tbest is reused.

framework that handles all the necessary steps including the
automatic instantiation of the model for a specific machine
and the development of a proof-of-concept library that utilizes
the model itself at runtime. Figure 3 shows the complete
CoCoPeLia framework. At the heart of the framework lies the
Tile selection runtime which employs the prediction models
described in detail in Section III. The deployment module
feeds the runtime with the proper transfer and execution sub-
models (predictors for tTh2d, tTd2h and tTGPU , slh2d bid, sld2hbid

– details in Section IV-A) while the library implements an
optimized subset of the BLAS prototype on top of basic GPU
BLAS kernels (details in Section IV-C). During application
execution, when a BLAS routine with a specific set of param-
eters is invoked for the first time, the CoCoPeLia model is
consulted in order to pick the best tiling size.

A. Deployment

To instantiate the models of Section III, we first model
the transfer time of the target system, with a semi-empirical
approach. We perform a set of micro-benchmarks offline and
use them to fit the coefficients of basic linear models for
transfer time. We use the well-accepted latency/bandwidth
model [10]–[12], [21], [30], which estimates transfer time as
a function of bytes. In our case the latency/bandwidth model
for host to device transfers takes the form:

5



TABLE II
TRANSFER SUB-MODELS FOR THE TWO TESTBEDS.

System
ti 1/tb RSE 1/tb bid. RSE bid. sl

Testbed I (Nvidia Tesla K40)
h2d 2.4e−6 3.15e9 1.1e−6 2.94e9 2.7e−6 1.07
d2h 2.2e−6 3.29e9 2.1e−6 2.84e9 3.4e−6 1.16

Testbed II (Nvidia Tesla V100)
h2d 2.5e−6 12.18e9 1.7e−6 9.59e9 3.4e−6 1.27
d2h 2.5e−6 12.98e9 2.8e−6 9.21e9 4.2e−6 1.41

tTh2d = ti + tb · (
bytes︷ ︸︸ ︷

T [·T ] · sizeof(dtype))
As discussed, we assume that bidirectional overlap imposes a
constant slowdown (sl) to transfer, and therefore the bidirec-
tional transfer time can be estimated by:

th2d bid = slh2d × th2d
Similarly, tTd2h, td2h bid are modeled with the same equations.
Therefore, the system-wise transfer parameters required for
prediction are ti, tb and sl for h2d and d2h (six in total). To
fit these coefficients, we conduct a set of micro-benchmarks,
subset of those proposed by Pearson [5]. For all transfer
experiments, we use the cublas{Set/Get}MatrixAsync
routines for h2d, d2h transfers respectively, with pinned host
memory, as required by these asynchronous calls. We obtain
ti empirically as the average latency of multiple single-byte
transfers. For tb, we run benchmarks for square transfers
with dtype = double, for D1 = D2 = 256

step=256−−−−−→
max device memory/2, and follow the same approach for
sl, but couple the entire transfer with a concurrent transfer
towards the opposite direction. We use least square regressions
on the 64 samples to compute tb, both in the case of uni-
directional and in the case of bi-directional transfers, excluding
ti from the transfer time during the regression (assuming zero
intercept), in the manner of [32], and then estimate sl. We
ensure the statistical robustness of the empirical values by
collecting repetitive measurements, until the 95% confidence
interval of the mean falls within 5% of the reported mean
value, for all micro-benchmarks. The micro-benchmarks for
transfer times are lightweight (requiring less than 10 minutes
and less than 3 minutes on Testbed I and II, respectively), and
only need to be run once on every new system CoCoPeLia is
deployed.

Table II contains the obtained values for the two testbeds
used in this work, described later in Section V-A. The dis-
played 1/tb is equal to each system’s PCIe bandwidth for each
direction. Testbed II has almost 3× higher bandwidth than
testbed I, but also has much larger bidirectional slowdowns sl
for both directions, indicating that overlapping h2d and d2h
transfers is not going to be as effective. The least square regres-
sion coefficient p-values for tb and slbid are < 2.2e− 16, and
the RSEs are between 1 and 4.2e−6, which is comparable to
ti, however this only affects the prediction of small transfers.

Second, we estimate routine GPU execution time. We are
only interested in the time of fine-grained chunks of specific

small tiling sizes, therefore we measure the execution time
for a set of tiling sizes T for each routine, store them and
perform value lookups at runtime, for usage in our models.
The usage of empirical estimates is favored by the tiled
execution and the non-linear execution time assumption in
CoCoPeLia, since micro-benchmarks for these chunks are
much more lightweight than an approach that would require
the full problem’s execution time, as in [11]. For example,
empirically estimating the execution time for a gemm problem
of size M = N = K = 32K using T = 2048 would
require texex routine(M,N,K) for [11], while for our case
texex routine(T, T, T ), which requires 4096 times less com-
putations, would be sufficient. To measure the GPU BLAS
execution time, we use cuBLAS, but given that kernel execu-
tion is wrapped and all libraries follow the BLAS standard,
this benchmarking method is applicable to any BLAS GPU
library with minimal adjustments.

We choose three representative routines; axpy for 1D
splitting and gemm for single and double precision for square
tiling. For daxpy, we run 256 benchmarks for D1 = N =

218
step=218−−−−−→ 226. For dgemm and sgemm, we use 64

benchmarks with square dimensions D1 = D2 = D3 =

256
step=256−−−−−→ 16384 for value lookup of tiled sub-kernels.

Therefore, the sub-model tTGPU can only predict time for these
380 and 64 tile sizes (via direct value lookup) for daxpy and
gemm respectively. We repeat the micro-benchmarks, until the
95% confidence interval of the mean falls within 5% of the
reported mean value. The required time for the benchmark
execution is less than 6 minutes for each routine on Testbed
I, and less than 2 minutes on Testbed II.

CoCoPeLia automates the micro-benchmark execution on
any new system without modifications. Upper limits for the
required benchmarks are extracted based on the available GPU
memory. Additionally, CoCoPeLia can be easily extended for
any BLAS routine by modifying the existing micro-benchmark
template scripts with the new routine and its parameters.

B. Tile selection

The CoCoPeLia runtime includes two functions for tile
selection. The function CoCoPeLia_predict combines the
empirical values obtained at deployment with the problem-
specific parameters used in the BLAS routine invocation
listed in Table I, to provide the execution time of a BLAS
routine, as a function of the tiling size T , using Eq. 4
and 5 for cases without and with data reuse. The problem
dimensions D1[, D2[, D3]] are inferred from the BLAS di-
mensions M,N,K, and S1i, S2i are then calculated based
on the above. Finally, geti, seti are obtained by querying the
pointers of the respective i−th data structure (e.g. matrix, vec-
tor) using cudaPointerGetAttributes. The function
CoCoPeLia_select is used to provide the best tiling size
T for a specific problem, using the CoCoPeLia_predict
routine to find Tbest, which minimizes the total offload time,
by iterating through all sizes T obtained at deployment for
the target routine. The function can be extended to include

6



different optimization criteria (e.g. GPU utilization, memory
etc.). We have measured model initialization to take 2-3 ms
and prediction time to be negligible (less than 100 µs).

The extension of the CoCoPeLia Tile selection runtime with
additional BLAS routines, besides the micro-benchmarks ex-
plained in IV-A, requires the following modifications: i) the ex-
tension of a skeleton for a CoCoPeLia_{routine}_init
function, that matches the routine’s parameters to the struct
with the model parameters of table I, and ii) the selection
of a CoCoPeLia_predict_{ModelName} function for
Tile prediction of this routine. The extension of CoCoPeLia
with new prediction models is possible by defining a new
CoCoPeLia_predict_{ModelName}. However, if any
additional parameters are required, the struct of table I must
be also modified accordingly.

C. Library-Tile scheduler

While selecting an appropriate tiling size T should suffice
for a 3-way concurrency optimized library to achieve near-
optimal performance, existing libraries do not optimize level-
1 and -2 BLAS routines, while cuBLASXt and BLASX often
result in less performance than what Eq. 5 hints.

To validate the accuracy of the proposed data-reuse model
and fill this performance gap, as a part of CoCoPeLia, we
implement an optimized end-to-end library for a subset of
the BLAS prototype on top of state-of-the art primitive li-
braries. We use cuBLAS as the GPU execution and data
transfer backend, utilizing cublas{Dtype}{Routine} and
cublas{Set/Get}MatrixAsync routines respectively.
For 3-way concurrency, we use CUDA streams, utilizing
one stream per operation (h2d transfer, d2h transfer, kernel
execution). The tile splitting, address matching and distribu-
tion (tile scheduler) are implemented based on the square
tiling approach (as implied in Eq 5), also used by [6],
[8]. After calculating these, the tile scheduler hands over
all underlying transfers and execution to the aforementioned
cuBLAS calls. Additionally, we enable GPU buffer and CUDA
stream reuse after the first routine call, to avoid allocation/de-
allocation overheads, as proposed by BLASX [8] to emulate
an iterative use-case scenario. Finally, CoCoPeLia routines
support either passing the tiling size T as an extra BLAS
parameter, similar to cuBLASXt, for validation reasons, or
using CoCoPeLia_select internally to predict Tbest during
invocation. CoCoPeLia routines also take advantage of model
reuse in the second case; they initialize the corresponding
model only the first time a user makes a call to CoCoPeLia
with a set of parameters (routine, problem size, flags, etc)
and use the preobtained Tbest in subsequent calls. The tile
scheduler is generalized per BLAS-level. To add a new BLAS
routine that utilizes the tile scheduler requires the creation of
a routine wrapper, since the specifics of each BLAS operation
differ, but transfer/ execution overlap is then achieved by the
tile scheduler without modifications. The underlying backend
functions are wrapped and can also be modified, as long as an
overlap mechanism similar to CUDA streams is available.

TABLE III
TESTBED CHARACTERISTICS

Testbed I Testbed II
CPU Intel Core i7-4820K Intel Xeon Silver 4114

3.7GHz 2.2GHz
GPU NVIDIA Tesla K40 NVIDIA Tesla V100

FP Peak 4.3 TFlop/s FP Peak 14 TFlop/s
DP Peak 1.4 TFlop/s DP Peak 7 TFlop/s

PCIe Gen2 x8 Gen3 x16
Compiler (host) g++ 4.7.2 g++ 7.5.0
Compiler flags -O3, -lm, -std=gnu99 -O3, -lm, -std=gnu99
CUDA 9.2 9.2
Compiler flags (GPU) -O3, -arch=sm 35 -O3, -arch=sm 75

V. EVALUATION

In this section, we evaluate the CoCoPeLia framework for
three example kernels; daxpy, sgemm, and dgemm. First,
we present our experimental setup, and describe the micro-
benchmark and validation sets we used. Then, we validate
the proposed 3-way concurrency time prediction model error
and the ability of CoCoPeLia to select near-optimal tile sizes.
Finally, we present the end-to-end performance achieved with
CoCoPeLia using our own 3-way concurrency implementation
coupled with automatic tile selection, and compare it with the
state of the art.

A. Experimental setup

We perform experiments for the validation of our models
and the evaluation of CoCoPeLia on two different testbeds,
the details of which are presented in Table III, along with
the information on code compilation. For time measure-
ments we use clock_gettime, with device synchroniza-
tion (cudaDeviceSynchronize()) also included; both
timer and synchronization overhead were less than 1% of
the benchmarked times. We perform 100 executions for each
benchmark, after a warmup run, not accounted for, and we
report the average time for all models, unless otherwise noted.
The allocation time needed for CPU/GPU buffers is not
modeled or included in the total time, and all matrices/vectors
are initialized with random values before execution. We use
pinned host memory to enable Async CUDA calls and the
cashes/buffers are not flushed between runs.

B. Validation sets

To validate different initial memory locations and prob-
lem sizes, we select four large problem sizes (N =
{8, 64, 128, 256} · 220) for daxpy, for all 22− 1 = 3 location
combinations (15 problems). Similarly, for sgemm and dgemm
we want to validate different locations, problem sizes and
shapes. We use four square problem sizes M = N = K =
{4, 8, 12, 16} · 210, for all 23 − 1 = 7 location combinations
(28 problems) to validate the location-problem size, and 3
problem sizes with M · N · K = {4, 8, 12, 16} · 210·3 for 3
fat-by-thin ratios M = N = K · r38 , r ∈ [3, 4, 5] and 3 thin-
by-fat ratios M = N = K · 8

r3 , r ∈ [3, 4, 5] for the scenario
of all data initially residing on the CPU (24 problems). We
exclude the scenario where all data is located on the GPU,
since there is no overlap. All selected problem sizes can fit in
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Fig. 4. Error distribution of the CSO-Model and the BTS-Model for daxpy
and cublasXt_{D,S}gemm without data reuse on testbeds I and II.

the device memory; we do not consider larger problem sizes
since that would require a considerably more sophisticated
implementation of overlap with memory constraints, which is
outside the scope of this work. For each problem size, we
measure the execution time t of 1) the CoCoPeLia wrapper
and 2) cuBLASXt, for all tile sizes T = 1024

step=256−−−−−→ 16384
for which T ≤ min(D1[,D2,D3])

1.5 .

C. Time prediction validation

We first focus on validating the prediction ability of our
bidirectional transfer overlap-aware model of Eq. 4, hereafter
referred to as BTS-Model, and our data reuse-aware model
of Eq. 5, hereafter referred to as DR-Model, used in tover =
CoCoPeLia_predict of Figure 3. We examine their error
over measured execution time and compare their predictive
power against the analytical CUDA stream overlap model with
two copy engines, proposed in [11], hereafter referred to as
CSO-Model. We evaluate the percentage (relative) error e% =
100·(tpredicted−tmeasured)/tmeasured. We highlight that both
models include empirical parts, which impose second order
errors. Nonetheless, the comparison between different models
is fair, as we rely on the same micro-benchmarks to collect
the empirical values.

We first validate the prediction accuracy of the BTS-Model,
which is suitable for problems without data reuse between
subkernels, using the level-1 BLAS daxpy, which does
not reuse data, and cuBLASXt sgemm and dgemm, which
do not sufficiently utilize data reuse to minimize transfers
[8], [9]. Figure 4 shows the relative error distribution for
daxpy, sgemm and dgemm, for both testbeds, in the form
of violinplots. First, we note that, on both testbeds, the BTS-
Model achieves very high prediction accuracy for daxpy
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Fig. 5. Error distribution of the CSO-Model and the DR-Model for our
CoCoPeLia wrapper BLAS implementation of sgemm and dgemm on testbeds
I and II.
with median errors between 1 to 2%, while the CSO-Model
underpredicts execution time with median errors between -3%
to -7%. This is attributed to the CSO-Model not accurately
modeling the actual bidirectional overlap, and is more evident
on Testbed-II, where the slowdown is larger on both directions.
Second, for both sgemm and dgemm, the prediction error is
higher. The CSO-Model again significantly underestimates the
execution time in almost all cases, with median errors between
-20% to -34%. On the other hand, the BTS-Model demonstrates
smaller median errors between -10% to -15% and a better error
distribution with no bias towards underprediction.

We then validate the prediction accuracy of the DR-Model,
using our aforementioned implementations for sgemm and
dgemm, in the CoCoPeLia library, which have near-optimal
data reuse on single-GPU scenarios, when the problem fits
the GPU memory. Figure 5 demonstrates the relative error
distribution on both testbeds. The CSO-Model underestimates
execution times, similarly to the cuBLASXt case in Figure 4,
however with fewer underestimations with errors ranging from
-20% to -60% and a lower median error of -7% to -15%.
Again, our DR-Model is significantly more accurate, with
median errors ranging from 2% to -5%, and a few high positive
errors (overestimations). It is interesting to note that both
models exhibit higher errors for sgemm, where the memory
footprint is half than the equivalent of dgemm, and smaller
problems are more prone to second order errors from the
empirical value acquisition. Additionally, our DR-Model is
more accurate for Testbed I, than Testbed II. This is due to
spikes in performance on the NVIDIA Tesla V100 GPU of
Testbed II for cublas {D,S}gemm, which are not present in
the NVIDIA Tesla K40 of Testbed I. We attribute these to the
more complex GPU architecture of the former.

D. Validation of tiling size selection

Subsequently, we validate the CoCoPeLia tiling size selec-
tion ability when used in practice. The target of the CoCoPeLia
framework is to predict the tiling size that leads to near-optimal
performance. We hence consider the following scenario: for all
validation cases in Section V-B, we explore the performance
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Fig. 6. Evaluation of Tile selection ability for Sgemm (a) and Dgemm (b) on testbed II. The baseline performance (gray bars) is acquired using a static
tiling size T = 2048, also used by BLASx. We compare this against the experimentally achieved performance using the optimal tiling size for each problem,
T = Topt, the performance achieved using the tiling size predicted with the CSO-Model [11] and c) the performance achieved using T = Tbest returned
by CoCoPeLia select using Equations 1, 2, 4, 5 respectively.

achieved by the prediction of each model, and how this
compares with a good baseline tiling size and the maximum
achievable performance, using the optimal tiling size Topt.

Figure 6 shows the results of this comparison for dgemm
and sgemm on Testbed II. The selected baseline tiling size
is T = 2048. First, the CSO-Model mispredicts the optimal
tiling sizes in both cases leading to performance degradation
compared to the baseline. This happens mostly because the
CSO-Model does not take into account the non-linearity of
execution time, which results in favoring small tiles with lim-
ited performance. Additionally, it is evident that the baseline
is enough to provide near-optimal performance for Figure 6a,
where even Topt provides a median performance improvement
of 1%, and a maximum of 10%. The CoCoPeLia models
provide performance close to the baseline, with the DR-Model
surpassing its performance, but less than 1% (which is close to
the Topt median). On the other hand, in the case of Figure 6b,

Topt is able to provide improvements of a median of 13.5%
and up to 20%. In this case, the incremental improvement of
each CoCoPeLia model is more evident; the Baseline-Model
(Equation 1) provides a median speedup of 7%, the Dataloc-
Model (Equation 2) and BTS-Model (Equation 4) both provide
median improvement of 10%, and the DR-Model (Equation 5)
provides 12% improved performance, which is very close
to the Topt median. We note that bidirectional slowdown,
considered by the BTS-Model, does not significantly affect
the performance of gemm, which requires fewer d2h than h2d
transfers. Its impact is more evident in level-1 BLAS functions
with similar transfers to and from device memory.

E. Performance evaluation

To evaluate the end-to-end performance of the runtime
scheme proposed in Figure 3, we extend the validation set
of Section V-B. For daxpy, we select 11 large problem
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Fig. 7. dgemm and sgemm performance evaluation for various problem sizes on testbeds I,II. We use three scenarios with different transfer-to-computation
ratios: 1) M = N = K with A, B on the GPU and C requiring update from the CPU (blue), 2) M = N = K with A, B, C on the CPU (red) and 3)
N = M = K

8
with A, B, C on the CPU (green).

sizes N = (1
step=N∗2−−−−−−→ 1024) · 220 for all three location

combinations. For sgemm and dgemm, we select 25 square
problem sizes M = N = K = (4

step=0.5−−−−−→ 16) · 210 for
all seven location combinations and for all thin/fat ratios of
the aforementioned validation set. Overall, we evaluate 33
problems for daxpy and 325 for dgemm and sgemm.

We compare the performance of CoCoPeLia sgemm and
dgemm against cuBLASXt and BLASX. These are both multi-
GPU libraries, but cuBLASXt is the state of practice and
BLASX offers the most performance for transfer-bound cases,
deeming them the most relevant comparison targets for single
GPU 3-way concurrency. We compare the performance of
CoCoPeLia daxpy against a unified memory implementation
with prefetching. Our BLASX results use the library default -
static - tiling size T = 2048. For cuBLASXt, which accepts
the tiling size as an input parameter, we test 10 different tiling
sizes and choose the best for each problem. We note that
this nearly-exhaustive tiling size selection gives a performance
advantage to cuBLASXt over BLASX.

Figure 7 visualizes the performance of the three libraries
for dgemm and sgemm on our two testbeds, for three sce-
narios of problem sizes and data locations. We first note that
BLASX outperforms cuBLASXt in fat-by-thin matrices, while
cuBLASXt shows better performance in the low transfer cases,
where only the C matrix resides on the CPU. Second, Co-
CoPeLia outperforms both BLASX and cuBLASXt in all three
scenarios. For the low-transfer scenario (blue), its performance
is on par with cuBLASXt, but it considerably outperforms

TABLE IV
(GEO)MEAN PERCENTILE COCOPELIA PERFORMANCE IMPROVEMENT

OVER STATE OF THE ART GPU BLAS LIBRARIES.

System Testbed I Testbed II
Offload Scenario Full Partial Full Partial

daxpy 21.5% 9.4% 19.9% 9.1%
dgemm 16.2% 5.8% 32.2% 15.6%
sgemm 20.6% 5.7% 33.3% 15.7%

the other two libraries for the full offload scenario (red) and
the transfer-heavy fat-by-thin matrix multiplication (green).
Third, CoCoPeLia provides better relative performance on
testbed II, which has a lower bandwidth/FLOP ratio and
therefore transfers are a bigger bottleneck.

In Table IV we summarize the mean percentile performance
improvement of CoCoPeLia over the best among the two
other libraries for each problem size, calculated using the
geometric mean of the fraction of their times, respectively.
We separate full and partial offload cases for reference with
relevant literature, where full offload refers to all data residing
on the CPU, and partial offload to some of the data residing
on the GPU. The results are similar to the outlined cases in
Figure 7; CoCoPeLia outperforms the other libraries by 16-
33% in the full offload case and 5-15% in the partial offload
case, indicating that it is able to improve cuBLAS performance
without architecture-specific tuning or bias towards specific
data shapes.
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VI. CONCLUSION

In this work we outlined that 3-way concurrency is currently
not well utilized in BLAS GPU offload libraries, since the
efficient split tile size depends on routine, problem, and
system-specific parameters. Since part of these only become
available during runtime, we propose a) two models for the
3-way overlap offload time as a function of tile size, b) a
micro-benchmark approach for initializing the empirical model
parameters offline, and c) a runtime tile scheduler for efficient
3-way overlap and data reuse. We combine these into an end-
to-end GPU BLAS framework, CoCoPeLia, and demonstrate
its use for dgemm, sgemm and daxpy; our evaluation shows
that it achieves lower errors than previous approaches and is
usable in practice for efficient tile prediction. Furthermore, our
BLAS wrapper with runtime tile prediction offers considerable
performance improvement over previous offload approaches
for all tested routines.

The proposed model offers many directions for future work,
since all components in Figure 3 can be improved separately;
the empirical modeling can be improved to limit second order
errors; the models can be fine-tuned to specific implementa-
tions and/or other routines; the tile scheduling strategy can
be further optimized. We plan to extend the model to more
complex tiling schemes for level-3 BLAS, and include multi-
GPU and host-assisted execution, with the vision of providing
a portable auto-tuned heterogeneous BLAS library.
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[30] G. Bernabé, J. Cuenca, L.-P. Garcı́a, and D. Giménez, “Tuning
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